Does vendor breeding colony influence sign- and goal-tracking in Pavlovian conditioned approach? A preregistered empirical replication
PDF
XML

Keywords

Sign-tracking
Goal-tracking
Pavlovian conditioning
Autoshaping
Vendor differences
Breeding colony

How to Cite

Khoo, S. Y.-S., Uhrig, A., Samaha, A.-N., & Chaudhri, N. (2022). Does vendor breeding colony influence sign- and goal-tracking in Pavlovian conditioned approach? A preregistered empirical replication. Neuroanatomy and Behaviour, 4, e46. https://doi.org/10.35430/nab.2022.e46

Funding data

Abstract

Vendor differences are thought to affect Pavlovian conditioning in rats. After observing possible differences in sign-tracking and goal-tracking behaviour with rats from different breeding colonies, we performed an empirical replication of the effect. 40 male Long-Evans rats from Charles River colonies ‘K72’ and ‘R06’ received 11 Pavlovian conditioned approach training sessions (or “autoshaping”), with a lever as the conditioned stimulus (CS) and 10% sucrose as the unconditioned stimulus (US). Each 58-min session consisted of 12 CS-US trials. Paired rats (n = 15/colony) received the US following lever retraction. Unpaired control rats (n = 5/colony) received sucrose during the inter-trial interval. Next, we evaluated the conditioned reinforcing properties of the CS, by determining whether rats would learn to nose-poke into a new, active (vs. inactive) port to receive CS presentations alone (no sucrose). Preregistered confirmatory analyses showed that during autoshaping sessions, Paired rats made significantly more CS-triggered entries into the sucrose port (i.e., goal-tracking) and lever activations (sign-tracking) than Unpaired rats did, demonstrating acquisition of the CS-US association. Confirmatory analyses showed no effects of breeding colony on autoshaping. During conditioned reinforcement testing, analysis of data from Paired rats alone showed significantly more active vs. inactive nosepokes, suggesting that in these rats, the lever CS acquired incentive motivational properties. Analysing Paired rats alone also showed that K72 rats had higher Pavlovian Conditioned Approach scores than R06 rats did.  Thus, breeding colony can affect outcome in Pavlovian conditioned approach studies, and animal breeding source should be considered as a covariate in such work.

https://doi.org/10.35430/nab.2022.e46
PDF
XML

References

Peterson Gail B, Ackilt James E, Frommer Gabriel P, Hearst Eliot S. Conditioned approach and contact behavior toward signals for food or brain-stimulation reinforcement. Science. 1972;177(4053):1009-11. doi: 10.1126/science.177.4053.1009.

Cleland GG, Davey GCL. Autoshaping in the rat: The effects of localizable visual and auditory signals for food. Journal of the Experimental Analysis of Behavior. 1983;40(1):47-56. doi: 10.1901/jeab.1983.40-47.

Kearns DN, Weiss SJ. Sign-tracking (autoshaping) in rats: A comparison of cocaine and food as unconditioned stimuli. Animal Learning & Behavior. 2004;32(4):463-76. doi: 10.3758/BF03196042.

Berridge KC. The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology. 2007;191(3):391-431. doi: 10.1007/s00213-006-0578-x.

Flagel SB, Watson SJ, Robinson TE, Akil H. Individual differences in the propensity to approach signals vs goals promote different adaptations in the dopamine system of rats. Psychopharmacology. 2007;191(3):599-607. doi: 10.1007/s00213-006-0535-8.

Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A, Willuhn I, et al. A selective role for dopamine in stimulus–reward learning. Nature. 2011;469:53-7. doi: 10.1038/nature09588.

Morrow JD, Maren S, Robinson TE. Individual variation in the propensity to attribute incentive salience to an appetitive cue predicts the propensity to attribute motivational salience to an aversive cue. Behavioural Brain Research. 2011;220(1):238-43. doi: 10.1016/j.bbr.2011.02.013.

Meyer PJ, Lovic V, Saunders BT, Yager LM, Flagel SB, Morrow JD, et al. Quantifying individual variation in the propensity to attribute incentive salience to reward cues. PLOS ONE. 2012;7(6):e38987. doi: 10.1371/journal.pone.0038987.

Fitzpatrick CJ, Gopalakrishnan S, Cogan ES, Yager LM, Meyer PJ, Lovic V, et al. Variation in the form of Pavlovian conditioned approach behavior among outbred male Sprague-Dawley rats from different vendors and colonies: Sign-tracking vs. goal-tracking. PLOS ONE. 2013;8(10):e75042. doi: 10.1371/journal.pone.0075042.

Chow JJ, Nickell JR, Darna M, Beckmann JS. Toward isolating the role of dopamine in the acquisition of incentive salience attribution. Neuropharmacology. 2016;109:320-31. doi: 10.1016/j.neuropharm.2016.06.028.

Fraser KM, Janak PH. Long-lasting contribution of dopamine in the nucleus accumbens core, but not dorsal lateral striatum, to sign-tracking. European Journal of Neuroscience. 2017;46(4):2047-55. doi: 10.1111/ejn.13642.

Khoo SY-S, Uhrig A, Samaha A-N, Chaudhri N. Effects of dopamine receptor antagonism and amphetamine-induced psychomotor sensitization on sign- and goal-tracking after extended training. Behavioural Brain Research. 2021;407:113238. doi: 10.1016/j.bbr.2021.113238.

Robinson TE, Berridge KC. The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research Reviews. 1993;18(3):247-91. doi: 10.1016/0165-0173(93)90013-P.

Robinson TE, Berridge KC. The incentive sensitization theory of addiction: some current issues. Philosophical Transactions of the Royal Society B: Biological Sciences. 2008;363(1507):3137-46. doi: 10.1098/rstb.2008.0093.

Samaha A-N, Khoo SYS, Ferrario CR, Robinson TE. Dopamine 'ups and downs' in addiction revisited. Trends in Neurosciences. 2021;44(7):516-26. doi: 10.1016/j.tins.2021.03.003.

Miller Francis P, Cox Raymond H, Maickel Roger P. Intrastrain differences in serotonin and norepinephrine in discrete areas of rat brain. Science. 1968;162(3852):463-4. doi: 10.1126/science.162.3852.463.

Sparber SB, Fossom LH. Amphetamine cumulation and tolerance development: Concurrent and opposing phenomena. Pharmacology Biochemistry and Behavior. 1984;20(3):415-24. doi: 10.1016/0091-3057(84)90280-6.

Poley W. Alcohol-preferring and alcohol-avoiding C57BL mice. Behavior Genetics. 1972;2(2):245-8. doi: 10.1007/BF01065693.

Bryant CD, Zhang NN, Sokoloff G, Fanselow MS, Ennes HS, Palmer AA, et al. Behavioral differences among C57BL/6 substrains: Implications for transgenic and knockout studies. Journal of Neurogenetics. 2008;22(4):315-31. doi: 10.1080/01677060802357388.

Olfe J, Domanska G, Schuett C, Kiank C. Different stress-related phenotypes of BALB/c mice from in-house or vendor: alterations of the sympathetic and HPA axis responsiveness. BMC Physiology. 2010;10(1):2. doi: 10.1186/1472-6793-10-2.

Dickson PE, McNaughton KA, Hou L, Anderson LC, Long KH, Chesler EJ. Sex and strain influence attribution of incentive salience to reward cues in mice. Behavioural Brain Research. 2015;292:305-15. doi: 10.1016/j.bbr.2015.05.039.

Löscher W, Ferland RJ, Ferraro TN. The relevance of inter- and intrastrain differences in mice and rats and their implications for models of seizures and epilepsy. Epilepsy & Behavior. 2017;73:214-35. doi: 10.1016/j.yebeh.2017.05.040.

Anselme P, Robinson MJF, Berridge KC. Reward uncertainty enhances incentive salience attribution as sign-tracking. Behavioural Brain Research. 2013;238:53-61. doi: 10.1016/j.bbr.2012.10.006.

Srey CS, Maddux J-MN, Chaudhri N. The attribution of incentive salience to Pavlovian alcohol cues: a shift from goal-tracking to sign-tracking. Frontiers in Behavioral Neuroscience. 2015;9:54. doi: 10.3389/fnbeh.2015.00054.

Villaruel FR, Chaudhri N. Individual differences in the attribution of incentive salience to a Pavlovian alcohol cue. Frontiers in Behavioral Neuroscience. 2016;10(238). doi: 10.3389/fnbeh.2016.00238.

Bacharach SZ, Nasser HM, Zlebnik NE, Dantrassy HM, Kochli DE, Gyawali U, et al. Cannabinoid receptor-1 signaling contributions to sign-tracking and conditioned reinforcement in rats. Psychopharmacology. 2018;235(10):3031-43. doi: 10.1007/s00213-018-4993-6.

Kehoe EJ, Horne AJ, Kingham J, Martin T, Roach W. Acquisition of a conditioned reflex in New Zealand White rabbits from three sources. Laboratory Animals. 1995;29(4):394-9. doi: 10.1258/002367795780739962.

Sparks LM, Sciascia JM, Ayorech Z, Chaudhri N. Vendor differences in alcohol consumption and the contribution of dopamine receptors to Pavlovian-conditioned alcohol-seeking in Long-Evans rats. Psychopharmacology. 2014;231(4):753-64. doi: 10.1007/s00213-013-3292-5.

Khoo SY-S, Uhrig A, Chaudhri N. Differences in autoshaping phenotype mediated by vendor breeding colony OSF Registries. 2019:PR42U. doi: 10.17605/OSF.IO/PR42U.

Nosek BA, Ebersole CR, DeHaven AC, Mellor DT. The preregistration revolution. Proceedings of the National Academy of Sciences. 2018;115(11):2600-6. doi: 10.1073/pnas.1708274114.

Oliff HS, Weber E, Eilon G, Marek P. The role of strain/vendor differences on the outcome of focal ischemia induced by intraluminal middle cerebral artery occlusion in the rat. Brain Research. 1995;675(1):20-6. doi: 10.1016/0006-8993(95)00033-M.

Oliff HS, Coyle P, Weber E. Rat strain and vendor differences in collateral anastomoses. Journal of Cerebral Blood Flow & Metabolism. 1997;17(5):571-6. doi: 10.1097/00004647-199705000-00012.

Pollock DM, Rekito A. Hypertensive response to chronic NO synthase inhibition is different in Sprague-Dawley rats from two suppliers. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 1998;275(5):R1719-R23. doi: 10.1152/ajpregu.1998.275.5.R1719.

Barassin S, Saboureau M, Kalsbeek A, Bothorel B, Vivien-Roels B, Malan A, et al. Interindividual differences in the pattern of melatonin secretion of the Wistar rat. Journal of Pineal Research. 1999;27(4):193-201. doi: 10.1111/j.1600-079X.1999.tb00615.x.

Buhimschi IA, Shi SQ, Saade GR, Garfield RE. Marked variation in responses to long-term nitric oxide inhibition during pregnancy in outbred rats from two different colonies. American Journal of Obstetrics and Gynecology. 2001;184(4):686-93. doi: 10.1067/mob.2001.110448.

Fuller DD, Baker TL, Behan M, Mitchell GS. Expression of hypoglossal long-term facilitation differs between substrains of Sprague-Dawley rat. Physiological Genomics. 2001;4(3):175-81. doi: 10.1152/physiolgenomics.2001.4.3.175.

Bueno A, de Olmos S, Manzini F, Desmond NL, de Olmos J. Strain and colony differences in the neurotoxic sequelae of MK-801 visualized with the amino-cupric-silver method. Experimental and Toxicologic Pathology. 2003;55(4):287-94. doi: 10.1078/0940-2993-00327.

Marosi M, Rákos G, Robotka H, Németh H, Sas K, Kis Z, et al. Hippocampal (CA1) activities in Wistar rats from different vendors: Fundamental differences in acute ischemia. Journal of Neuroscience Methods. 2006;156(1):231-5. doi: 10.1016/j.jneumeth.2006.03.010.

Pecoraro N, Ginsberg AB, Warne JP, Gomez F, la Fleur SE, Dallman MF. Diverse basal and stress-related phenotypes of Sprague Dawley rats from three vendors. Physiology & Behavior. 2006;89(4):598-610. doi: 10.1016/j.physbeh.2006.07.019.

Zhang-James Y, Middleton FA, Faraone SV. Genetic architecture of Wistar-Kyoto rat and spontaneously hypertensive rat substrains from different sources. Physiological Genomics. 2013;45(13):528-38. doi: 10.1152/physiolgenomics.00002.2013.

Glick SD, Shapiro RM, Drew KL, Hinds PA, Carlson JN. Differences in spontaneous and amphetamine-induced rotational behavior, and in sensitization to amphetamine, among Sprague-Dawley derived rats from different sources. Physiology & Behavior. 1986;38(1):67-70. doi: 10.1016/0031-9384(86)90133-2.

Helmstetter FJ, Fanselow MS. Strain differences in reversal of conditional analgesia by opioid antagonists. Behavioral Neuroscience. 1987;101(5):735-7. doi: 10.1037/0735-7044.101.5.735.

Paré WP, Kluczynski J. Differences in the stress response of Wistar-Kyoto (WKY) rats from different vendors. Physiology & Behavior. 1997;62(3):643-8. doi: 10.1016/S0031-9384(97)00191-1.

Bert B, Fink H, Sohr R, Rex A. Different effects of diazepam in Fischer rats and two stocks of Wistar rats in tests of anxiety. Pharmacology Biochemistry and Behavior. 2001;70(2):411-20. doi: 10.1016/S0091-3057(01)00629-3.

Perrotti LI, Russo SJ, Lagos F, Quiñones-Jenab V. Vendor differences in cocaine-induced behavioral activity and hormonal interactions in ovariectomized Fischer rats. Brain Research Bulletin. 2001;54(1):1-5. doi: 10.1016/S0361-9230(00)00330-0.

Swerdlow NR, Platten A, Kim YK, Gaudet I, Shoemaker J, Pitcher L, et al. Sensitivity to the dopaminergic regulation of prepulse inhibition in rats: Evidence for genetic, but not environmental determinants. Pharmacology Biochemistry and Behavior. 2001;70(2):219-26. doi: 10.1016/S0091-3057(01)00598-6.

Honndorf S, Lindemann C, Töllner K, Gernert M. Female Wistar rats obtained from different breeders vary in anxiety-like behavior and epileptogenesis. Epilepsy Research. 2011;94(1):26-38. doi: 10.1016/j.eplepsyres.2010.12.012.

Theilmann W, Kleimann A, Rhein M, Bleich S, Frieling H, Löscher W, et al. Behavioral differences of male Wistar rats from different vendors in vulnerability and resilience to chronic mild stress are reflected in epigenetic regulation and expression of p11. Brain Research. 2016;1642:505-15. doi: 10.1016/j.brainres.2016.04.041.

Kristensen PJ, Heegaard AM, Hestehave S, Jeggo RD, Bjerrum OJ, Munro G. Vendor-derived differences in injury-induced pain phenotype and pharmacology of Sprague–Dawley rats: Does it matter? European Journal of Pain. 2017;21(4):692-704. doi: 10.1002/ejp.973.

Schwabe K, Boldt L, Bleich A, van Dijk RM, Helgers SOA, Häger C, et al. Nest-building performance in rats: impact of vendor, experience, and sex. Laboratory Animals. 2020;54(1):17-25. doi: 10.1177/0023677219862004.

Tsuda MC, Mahdi S, Namchuk A, Wu TJ, Lucki I. Vendor differences in anxiety-like behaviors in female and male Sprague Dawley rats. Physiology & Behavior. 2020;227:113131. doi: 10.1016/j.physbeh.2020.113131.

Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res. 2007;39(2):175-91. doi: 10.3758/BF03193146. PubMed PMID: 17695343.

Panayi MC, Killcross S. Functional heterogeneity within the rodent lateral orbitofrontal cortex dissociates outcome devaluation and reversal learning deficits. eLife. 2018;7:e37357. doi: 10.7554/eLife.37357.

Ahrens AM, Singer BF, Fitzpatrick CJ, Morrow JD, Robinson TE. Rats that sign-track are resistant to Pavlovian but not instrumental extinction. Behavioural Brain Research. 2016;296:418-30. doi: 10.1016/j.bbr.2015.07.055.

Hurvich CM, Tsai C-L. Regression and time series model selection in small samples. Biometrika. 1989;76(2):297-307. doi: 10.1093/biomet/76.2.297.

Heck RH, Thomas SL, Tabata LN. Multilevel and longitudinal modeling with IBM SPSS. 2nd ed. New York: Routledge; 2014.

Symonds MRE, Moussalli A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike's information criterion. Behav Ecol Sociobiol. 2011;65(1):13-21. doi: 10.1007/s00265-010-1037-6.

R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2014.

Khoo SY-S, Uhrig A, Samaha A-N, Chaudhri N. Dataset: Does vendor breeding colony influence sign- and goal-tracking in Pavlovian conditioned approach? Zenodo. 2022. doi: 10.5281/zenodo.6826312.

Mackintosh NJ. The psychology of animal learning. London: Academic Press; 1974.

Robbins TW. The acquisition of responding with conditioned reinforcement: Effects of pipradrol, methylphenidate, d-amphetamine, and nomifensine. Psychopharmacology. 1978;58(1):79-87. doi: 10.1007/BF00426794.

Di Ciano P, Everitt BJ. Conditioned reinforcing properties of stimuli paired with self-administered cocaine, heroin or sucrose: implications for the persistence of addictive behaviour. Neuropharmacology. 2004;47:202-13. doi: 10.1016/j.neuropharm.2004.06.005.

Sorge RE, Martin LJ, Isbester KA, Sotocinal SG, Rosen S, Tuttle AH, et al. Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nature Methods. 2014;11(6):629-32. doi: 10.1038/nmeth.2935.

Ferguson SA, Maier KL. A review of seasonal/circannual effects of laboratory rodent behavior. Physiology & Behavior. 2013;119:130-6. doi: 10.1016/j.physbeh.2013.06.007.

Theil JH, Ahloy-Dallaire J, Weber EM, Gaskill BN, Pritchett-Corning KR, Felt SA, et al. The epidemiology of fighting in group-housed laboratory mice. Scientific Reports. 2020;10(1):16649. doi: 10.1038/s41598-020-73620-0.

Gileta AF, Fitzpatrick CJ, Chitre AS, St. Pierre CL, Joyce EV, Maguire RJ, et al. Genetic characterization of outbred Sprague Dawley rats and utility for genome-wide association studies. PLOS Genetics. 2022;18(5):e1010234. doi: 10.1371/journal.pgen.1010234.

Capdevila S, Giral M, Ruiz de la Torre JL, Russell RJ, Kramer K. Acclimatization of rats after ground transportation to a new animal facility. Laboratory Animals. 2007;41(2):255-61. doi: 10.1258/002367707780378096. PubMed PMID: 17430625.

Arts JWM, Kramer K, Arndt SS, Ohl F. The impact of transportation on physiological and behavioral parameters in Wistar rats: Implications for acclimatization periods. ILAR Journal. 2012;53(1):E82-E98. doi: 10.1093/ilar.53.1.82.

Swallow J, Anderson D, Buckwell AC, Harris T, Hawkins P, Kirkwood J, et al. Guidance on the transport of laboratory animals. Laboratory Animals. 2005;39(1):1-39. doi: 10.1258/0023677052886493.

Spring MG, Caccamise A, Panther EA, Windsor BM, Soni KR, McReynolds JR, et al. Chronic stress prevents cortico-accumbens cue encoding and alters conditioned approach. The Journal of Neuroscience. 2021;41(11):2428-36. doi: 10.1523/jneurosci.1869-20.2021.

Khoo SYS, Correia V, Uhrig A. Nesting material enrichment reduces severity of overgrooming-related self-injury in individually housed rats. Laboratory Animals. 2020;54(6):546-58. doi: 10.1177/0023677219894356.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Shaun Yon-Seng Khoo, Alexandra Uhrig, Anne-Noël Samaha, Nadia Chaudhri

Downloads

Download data is not yet available.