Decynium-22 affects behavior in the zebrafish light/dark test


Defensive behavior

How to Cite

Maximino, C. (2021). Decynium-22 affects behavior in the zebrafish light/dark test. Neuroanatomy and Behaviour, 3, e21.


Decynium-22 (D-22) is an inhibitor of the uptake2 system of monoamine clearance, resulting in increased levels of dopamine and norepinephrine (and in some cases serotonin) in the nervous system and elsewhere. Uptake2 is mediated by low-affinity, high-capacity transporters that are inhibited by glucocorticoids, suggesting a mechanism of fast glucocorticoid-monoamine interaction in the brain and a possible target for antidepressants. D-22 dose-dependently increased anxiety-like behavior in adult zebrafish exposed to the light/dark test, monotonically increasing scototaxis (dark preference), but affecting risk assessment with an inverted-U-shaped response. These results suggest that the uptake2 system has a role in defensive behavior in zebrafish, presenting a novel mechanism by which stress and glucocorticoids could produce fast neurobehavioral adjustments in vertebrates.


Daws LC. Unfaithful neurotransmitter transporters: Focus on serotonin uptake and implications for antidepressant efficacy. Pharmacology & Therapeutics. 2009;121(1):89-99. doi: 10.1016/j.pharmthera.2008.10.004.

Iversen LL. Catecholamine uptake processes. British Medical Bulletin. 1973;29(2):130-135. doi: 10.1093/oxfordjournals.bmb.a070982.

Iversen LL. Role of transmitter uptake mechanisms in synaptic neurotransmission. British Journal of Pharmacology. 1971;41(4):571-591. doi: 10.1111/j.1476-5381.1971.tb07066.x.

Wang J. The plasma membrane monoamine transporter (PMAT): Structure, function, and role in organic cation disposition. Clinical Pharmacology & Therapeutics. 2016;100(5):489-499. doi: 10.1002/cpt.442.

Eisenhofer G. The role of neuronal and extraneuronal plasma membrane transporters in the inactivation of peripheral catecholamines. Pharmacology & Therapeutics. 2001;91(1):35-62. doi: 10.1016/s0163-7258(01)00144-9.

Rudnick G, Krämer R, Blakely RD, Murphy DL, Verrey F. The SLC6 transporters: perspectives on structure, functions, regulation, and models for transporter dysfunction. Pflügers Archiv - European Journal of Physiology. 2013;466(1):25-42. doi: 10.1007/s00424-013-1410-1.

Duan H, Wang J. Selective transport of monoamine neurotransmitters by human plasma membrane monoamine transporter and organic cation transporter 3. Journal of Pharmacology and Experimental Therapeutics. 2010;335(3):743-753. doi: 10.1124/jpet.110.170142.

Mohammad F, Ho J, Woo JH, Lim CL, Poon DJJ, Lamba B et al. Concordance and incongruence in preclinical anxiety models: Systematic review and meta-analyses. Neuroscience & Biobehavioral Reviews. 2016;68:504-529. doi: 10.1016/j.neubiorev.2016.04.011.

Maximino C. Serotonin and anxiety. Neuroanatomical, pharmacological, and functional aspects. New York, NY: Springer. doi: 10.1007/978-1-4614-4048-2.

Shelton RC. Serotonin and Norepinephrine Reuptake Inhibitors. In: Macaluso M, Preskorn SH, editors. Antidepressants. vol. 250 of Handbook of Experimental Pharmacology. Cham: Springer. p. 145-180. doi: 10.1007/164_2018_164.

Aggarwal S, Mortensen OV. Overview of Monoamine Transporters. Current Protocols in Pharmacology. 2017;79(1). doi: 10.1002/cpph.32.

Gorman JM. Treatment of generalized anxiety disorder. The Journal of Clinical Psychiatry. 2002;63(Suppl 8):17-23. PMID: 12044104.

Wu X, Kekuda R, Huang W, Fei Y, Leibach FH, Chen J et al. Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. Journal of Biological Chemistry. 1998;273(49):32776-32786. doi: 10.1074/jbc.273.49.32776.

Zhou M, Engel K, Wang J. Evidence for significant contribution of a newly identified monoamine transporter (PMAT) to serotonin uptake in the human brain. Biochemical Pharmacology. 2007;73(1):147-154. doi: 10.1016/j.bcp.2006.09.008.

Eisenhofer G, Kopin IJ, Goldstein DS. Catecholamine metabolism: A contemporary view with implications for physiology and medicine. Pharmacological Reviews. 2004;56(3):331-349. doi: 10.1124/pr.56.3.1.

Schildkraut JJ, Mooney JJ. Toward a rapidly acting antidepressant: The normetaneprhine and extraneuronal monoamine transporter (uptake 2) hypothesis. American Journal of Psychiatry. 2004;161(5):909-911. doi: 10.1176/appi.ajp.161.5.909.

Kitaichi K, Fukuda M, Nakayama H, Aoyama N, Ito Y, Fujimoto Y et al. Behavioral changes following antisense oligonucleotide-induced reduction of organic cation transporter-3 in mice. Neuroscience Letters. 2005;382(1-2):195-200. doi: 10.1016/j.neulet.2005.03.014.

Rahman Z, Ring RH, Young K, Platt B, Lin Q, Schechter LE et al. Inhibition of uptake 2 (or extraneuronal monoamine transporter) by normetanephrine potentiates the neurochemical effects of venlafaxine. Brain Research. 2008;1203:68-78. doi: 10.1016/j.brainres.2008.01.062.

Wultsch T, Grimberg G, Schmitt A, Painsipp E, Wetzstein H, Breitenkamp AFS et al. Decreased anxiety in mice lacking the organic cation transporter 3. Journal of Neural Transmission. 2009;116(6):689-697. doi: 10.1007/s00702-009-0205-1.

Hagan CE, Schenk JO, Neumaier JF. The contribution of low-affinity transport mechanisms to serotonin clearance in synaptosomes. Synapse. 2011;65(10):1015-1023. doi: 10.1002/syn.20929.

Zhu H, Appel DI, Gründemann D, Richelson E, Markowitz JS. Evaluation of organic cation transporter 3 (SLC22A3) inhibition as a potential mechanism of antidepressant action. Pharmacological Research. 2012;65(4):491-496. doi: 10.1016/j.phrs.2012.01.008.

Daws LC, Koek W, Mitchell NC. Revisiting serotonin reuptake inhibitors and the therapeutic potential of “uptake-2” in psychiatric disorders. ACS Chemical Neuroscience. 2013;4(1):16-21. doi: 10.1021/cn3001872.

Horton RE, Apple DM, Owens WA, Baganz NL, Cano S, Mitchell NC et al. Decynium-22 enhances SSRI-induced antidepressant-like effects in mice: Uncovering novel targets to treat depression. Journal of Neuroscience. 2013;33(25):10534-10543. doi: 10.1523/jneurosci.5687-11.2013.

Baganz NL, Horton RE, Calderon AS, Owens WA, Munn JL, Watts LT et al. Organic cation transporter 3: Keeping the brake on extracellular serotonin in serotonin-transporter-deficient mice. Proceedings of the National Academy of Sciences. 2008;105(48):18976-18981. doi: 10.1073/pnas.0800466105.

Hill JE, Makky K, Shrestha L, Hillard CJ, Gasser PJ. Natural and synthetic corticosteroids inhibit uptake2-mediated transport in CNS neurons. Physiology & Behavior. 2011;104(2):306-311. doi: 10.1016/j.physbeh.2010.11.012.

Gasser PJ, Lowry CA. Organic cation transporter 3: A cellular mechanism underlying rapid, non-genomic glucocorticoid regulation of monoaminergic neurotransmission, physiology, and behavior. Hormones and Behavior. 2018;104:173-182. doi: 10.1016/j.yhbeh.2018.05.003.

Engel K, Wang J. Interaction of Organic Cations with a Newly Identified Plasma Membrane Monoamine Transporter. Molecular Pharmacology. 2005;68(5):1397-1407. doi: 10.1124/mol.105.016832.

Vialou V, Balasse L, Callebert J, Launay J, Giros B, Gautron S. Altered aminergic neurotransmission in the brain of organic cation transporter 3-deficient mice. Journal of Neurochemistry. 2008;:1471-1482. doi: 10.1111/j.1471-4159.2008.05506.x.

Willner P. The validity of animal models of depression. Psychopharmacology. 1984;83(1):1-16. doi: 10.1007/bf00427414.

Stewart AM, Ullmann JFP, Norton WHJ, Parker MO, Brennan CH, Gerlai R et al. Molecular psychiatry of zebrafish. Molecular Psychiatry. 2014;20(1):2-17. doi: 10.1038/mp.2014.128.

Gerlai R. Fish in behavior research: Unique tools with a great promise!. Journal of Neuroscience Methods. 2014;234:54-58. doi: 10.1016/j.jneumeth.2014.04.015.

Maximino C, de Brito TM, da Silva Batista AW, Herculano AM, Morato S, Gouveia A. Measuring anxiety in zebrafish: A critical review. Behavioural Brain Research. 2010;214(2):157-171. doi: 10.1016/j.bbr.2010.05.031.

Rinkwitz S, Mourrain P, Becker TS. Zebrafish: An integrative system for neurogenomics and neurosciences. Progress in Neurobiology. 2011;93(2):231-243. doi: 10.1016/j.pneurobio.2010.11.003.

Fuzzen ML, Van Der Kraak G, Bernier NJ. Stirring up new ideas about the regulation of the hypothalamic-pituitary-interrenal axis in zebrafish (Danio rerio). Zebrafish. 2010;7(4):349-358. doi: 10.1089/zeb.2010.0662.

Tran S, Chatterjee D, Gerlai R. Acute net stressor increases whole-body cortisol levels without altering whole-brain monoamines in zebrafish.. Behavioral Neuroscience. 2014;128(5):621-624. doi: 10.1037/bne0000005.

Idalencio R, Kalichak F, Rosa JGS, Oliveira TAd, Koakoski G, Gusso D et al. Waterborne risperidone decreases stress response in zebrafish. PLOS ONE. 2015;10(10):e0140800. doi: 10.1371/journal.pone.0140800.

Idalencio R, de Alcântara Barcellos HH, Kalichak F, da Rosa JGS, Oliveira TA, de Abreu MS et al. α-Methyltyrosine, a tyrosine hydroxylase inhibitor, decreases stress response in zebrafish (Danio rerio). General and Comparative Endocrinology. 2017;252:236-238. doi: 10.1016/j.ygcen.2017.07.012.

Giacomini ACV, Abreu MS, Giacomini LV, Siebel AM, Zimerman FF, Rambo CL et al. Fluoxetine and diazepam acutely modulate stress induced-behavior. Behavioural Brain Research. 2016;296:301-310. doi: 10.1016/j.bbr.2015.09.027.

Abreu MS, Giacomini ACV, Koakoski G, Piato AL, Barcellos LJ. Divergent effect of fluoxetine on the response to physical or chemical stressors in zebrafish. PeerJ. 2017;5:e3330. doi: 10.7717/peerj.3330.

Kysil EV, Meshalkina DA, Frick EE, Echevarria DJ, Rosemberg DB, Maximino C et al. Comparative analyses of zebrafish anxiety-like behavior using conflict-based novelty tests. Zebrafish. 2017;14(3):197-208. doi: 10.1089/zeb.2016.1415.

Maximino C, de Oliveira DL, Broock Rosemberg D, de Jesus Oliveira Batista E, Herculano AM, Matos Oliveira KR et al. A comparison of the light/dark and novel tank tests in zebrafish. Behaviour. 2012;149(10-12):1099-1123. doi: 10.1163/1568539x-00003029.

Maximino C, da Silva AWB, Gouveia A, Herculano AM. Pharmacological analysis of zebrafish (Danio rerio) scototaxis. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2011;35(2):624-631. doi: 10.1016/j.pnpbp.2011.01.006.

Maximino C, da Silva AWB, Araújo J, Lima MG, Miranda V, Puty B et al. Fingerprinting of psychoactive drugs in zebrafish anxiety-like behaviors. PLoS ONE. 2014;9(7):e103943. doi: 10.1371/journal.pone.0103943.

Maximino C, Puty B, Benzecry R, Araújo J, Lima MG, de Jesus Oliveira Batista E et al. Role of serotonin in zebrafish (Danio rerio) anxiety: Relationship with serotonin levels and effect of buspirone, WAY 100635, SB 224289, fluoxetine and para-chlorophenylalanine (pCPA) in two behavioral models. Neuropharmacology. 2013;71:83-97. doi: 10.1016/j.neuropharm.2013.03.006.

Mihaljević I, Popović M, Zaja R, Smital T. Phylogenetic, syntenic, and tissue expression analysis of slc22 genes in zebrafish (Danio rerio). BMC Genomics. 2016;17(1). doi: 10.1186/s12864-016-2981-y.

Mihaljević I, Popović M, Žaja R, Maraković N, Šinko G, Smital T. Interaction between the zebrafish (Danio rerio) organic cation transporter 1 (Oct1) and endo- and xenobiotics. Aquatic Toxicology. 2017;187:18-28. doi: 10.1016/j.aquatox.2017.03.012.

Maximino C, P. Costa B, G. Lima M. A review of monoaminergic neuropsychopharmacology in zebrafish, 6 Years Later: Towards paradoxes and their solution. Current Psychopharmacology. 2016;5(2):96-138. doi: 10.2174/2211556005666160527105104.

Verri T, Terova G, Romano A, Barca A, Pisani P, Storelli C et al. The SoLute Carrier (SLC) Family Series in Teleost Fish. In: Saroglia M, Liu Z, editors. Functional Genomics in Aquaculture. Ames, Iowa: Wiley-Blackwell. p. 219-320. doi: 10.1002/9781118350041.ch10.

Sivasubbu S, Balciunas D, Davidson AE, Pickart MA, Hermanson SB, Wangensteen KJ et al. Gene-breaking transposon mutagenesis reveals an essential role for histone H2afza in zebrafish larval development. Mechanisms of Development. 2006;123(7):513-529. doi: 10.1016/j.mod.2006.06.002.

Soares MC, Gerlai R, Maximino C. The integration of sociality, monoamines and stress neuroendocrinology in fish models: Applications in the neurosciences. Journal of Fish Biology. 2018;93(2):170-191. doi: 10.1111/jfb.13757.

Pimentel AFN, Lima-Maximino MG, Soares MC, Maximino C. Zebrafish cooperate while inspecting predators: experimental evidence for conditional approach. bioRxiv [Preprint]. 2020. doi: 10.1101/814434.

Parra KV, Adrian Jr. JC, Gerlai R. The synthetic substance hypoxanthine 3-N-oxide elicits alarm reactions in zebrafish (Danio rerio). Behavioural Brain Research. 2009;205(2):336-341. doi: 10.1016/j.bbr.2009.06.037.

Speedie N, Gerlai R. Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behavioural Brain Research. 2008;188(1):168-177. doi: 10.1016/j.bbr.2007.10.031.

Lawrence C. The husbandry of zebrafish (Danio rerio): A review. Aquaculture. 2007;269(1-4):1-20. doi: 10.1016/j.aquaculture.2007.04.077.

CONCEA. Anexo I. Peixes mantidos em instalações de instituições de ensino ou pesquisa científica. In: Diretriz brasileira para o cuidado e a utilização de animais para fins científicos e didáticos - DBCA. Brasília: Conselho Nacional de Controle de Experimentação Animal. .

Demin KA, Kolesnikova TO, Khatsko SL, Meshalkina DA, Efimova EV, Morzherin YY et al. Acute effects of amitriptyline on adult zebrafish: Potential relevance to antidepressant drug screening and modeling human toxidromes. Neurotoxicology and Teratology. 2017;62:27-33. doi: 10.1016/

Leys C, Ley C, Klein O, Bernard P, Licata L. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology. 2013;49(4):764-766. doi: 10.1016/j.jesp.2013.03.013.

Kinkel MD, Eames SC, Philipson LH, Prince VE. Intraperitoneal injection into adult zebrafish. Journal of Visualized Experiments. 2010;(42):e2126. doi: 10.3791/2126.

Maximino C. Light/dark preference test for adult zebrafish (Danio rerio) v2. 2018;doi: 10.17504/

Hothorn T, Hornik K, van de Wiel MA, Zeileis A. A Lego System for Conditional Inference. The American Statistician. 2006;60(3):257-263. doi: 10.1198/000313006x118430.

Ludbrook J, Dudley H. Why Permutation Tests Are Superior to t and F Tests in Biomedical Research. The American Statistician. 1998;52(2):127. doi: 10.2307/2685470.

Anderson MJ. Permutation tests for univariate or multivariate analysis of variance and regression. Canadian Journal of Fisheries and Aquatic Sciences. 2001;58(3):626-639. doi: 10.1139/f01-004.

Ho J, Tumkaya T, Aryal S, Choi H, Claridge-Chang A. Moving beyond P values: data analysis with estimation graphics. Nature Methods. 2019;16(7):565-566. doi: 10.1038/s41592-019-0470-3.

Efron B, Tibshirani RJ. An introduction to the bootstrap. Boca Raton: Chapman & Hall/CRC. OCLC: 780817758.

Cumming G. The New Statistics. Psychological Science. 2013;25(1):7-29. doi: 10.1177/0956797613504966.

Maximino C, Marques de Brito T, Dias CAGdM, Gouveia A, Morato S. Scototaxis as anxiety-like behavior in fish. Nature Protocols. 2010;5(2):209-216. doi: 10.1038/nprot.2009.225.

Marcinkiewcz C, Devine D. Modulation of OCT3 expression by stress, and antidepressant-like activity of decynium-22 in an animal model of depression. Pharmacology Biochemistry and Behavior. 2015;131:33-41. doi: 10.1016/j.pbb.2015.01.004.

Narboux-Nême N, Angenard G, Mosienko V, Klempin F, Pitychoutis PM, Deneris E et al. Postnatal growth defects in mice with constitutive depletion of central serotonin. ACS Chemical Neuroscience. 2012;4(1):171-181. doi: 10.1021/cn300165x.

Altieri SC, Garcia-Garcia AL, Leonardo ED, Andrews AM. Rethinking 5 HT1A receptors: Emerging modes of inhibitory feedback of relevance to emotion-related behavior. ACS Chemical Neuroscience. 2012;4(1):72-83. doi: 10.1021/cn3002174.

Gutknecht L, Waider J, Kraft S, Kriegebaum C, Holtmann B, Reif A et al. Deficiency of brain 5-HT synthesis but serotonergic neuron formation in Tph2 knockout mice. Journal of Neural Transmission. 2008;115(8):1127-1132. doi: 10.1007/s00702-008-0096-6.

Suri D, Teixeira CM, Cagliostro MKC, Mahadevia D, Ansorge MS. Monoamine-sensitive developmental periods impacting adult emotional and cognitive behaviors. Neuropsychopharmacology. 2014;40(1):88-112. doi: 10.1038/npp.2014.231.

Fraser-Spears R, Krause-Heuer AM, Basiouny M, Mayer FP, Manishimwe R, Wyatt NA et al. Comparative analysis of novel decynium-22 analogs to inhibit transport by the low-affinity, high-capacity monoamine transporters, organic cation transporters 2 and 3, and plasma membrane monoamine transporter. European Journal of Pharmacology. 2019;842:351-364. doi: 10.1016/j.ejphar.2018.10.028.

Hagan CE, Schenk JO, Neumaier JF. The contribution of low-affinity transport mechanisms to serotonin clearance in synaptosomes. Synapse. 2011;65(10):1015-1023. doi: 10.1002/syn.20929.

Herculano AM, Maximino C. Serotonergic modulation of zebrafish behavior: Towards a paradox. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2014;55:50-66. doi: 10.1016/j.pnpbp.2014.03.008.

Maximino C. Dataset: Effect of decynium-22 on zebrafish anxiety-like behavior. Zenodo. 2021;doi: 10.5281/zenodo.5121722.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 Caio Maximino


Download data is not yet available.