mGlu5: A double-edged sword for aversive learning related therapeutics



Learning and Memory
Aversive Learning
Fear Conditioning

How to Cite

Tan, S. Z. K., & Kim, J. H. (2021). mGlu5: A double-edged sword for aversive learning related therapeutics. Neuroanatomy and Behaviour, 3, e16.


Aversive memories underlie many types of anxiety disorders. One area of research to more effectively treat anxiety disorders has therefore been identifying pharmacological targets to affect memory processes. Among these targets, the metabotropic glutamate 5 receptor (mGlu5) has received attention due to the availability of drugs to utilize its role in learning and memory. In this review, we highlight preclinical studies examining the role of mGlu5 at various stages of aversive learning and its inhibition via extinction in order to gain a better understanding of its therapeutic potential. We suggest that mGlu5 has distinct roles at different stages of memory that not only makes it a tricky target, but a double-edged sword as a therapeutic. However, the selective involvement of mGlu5 in different memory stages allows for certain precision that could be harnessed clinically. We therefore suggest potential applications, limitations, and pitfalls when considering use of mGlu5 modulators as therapeutics. In addition, we recommend future studies to address important gaps in this literature, such as sex and age factors in light of anxiety disorders being more prevalent in those demographics.


Roy M. Weighting Pain Avoidance and Reward Seeking: A Neuroeconomical Approach to Pain. Journal of Neuroscience. 2010;30(12). doi: 10.1523/jneurosci.0262-10.2010.

World Health Organization. World health report 2001: Mental health: New understanding, new hope. Geneva: World Health Organization; 2001.

Baum M. Spontaneous recovery from the effects of flooding (exposure) in animals. Behaviour Research and Therapy. 1988;26(2). doi: 10.1016/0005-7967(88)90118-0.

Bouton ME. Context, ambiguity, and unlearning: sources of relapse after behavioral extinction. Biological Psychiatry. 2002;52(10). doi: 10.1016/s0006-3223(02)01546-9.

Farach FJ, Pruitt LD, Jun JJ, Jerud AB, Zoellner LA, Roy-Byrne PP. Pharmacological treatment of anxiety disorders: Current treatments and future directions. Journal of Anxiety Disorders. 2012;26(8). doi: 10.1016/j.janxdis.2012.07.009.

Klucken T, Kruse O, Schweckendiek J, Kuepper Y, Mueller EM, Hennig J, et al. No evidence for blocking the return of fear by disrupting reconsolidation prior to extinction learning. Cortex. 2016;79. doi: 10.1016/j.cortex.2016.03.015.

Singewald N, Schmuckermair C, Whittle N, Holmes A, Ressler KJ. Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharmacology & Therapeutics. 2015;149. doi: 10.1016/j.pharmthera.2014.12.004.

Ressler KJ, Rothbaum BO, Tannenbaum L, Anderson P, Graap K, Zimand E, et al. Cognitive Enhancers as Adjuncts to Psychotherapy. Archives of General Psychiatry. 2004;61(11). doi: 10.1001/archpsyc.61.11.1136.

Ganella DE, Kim JH. Developmental rodent models of fear and anxiety: from neurobiology to pharmacology. British Journal of Pharmacology. 2014;171(20). doi: 10.1111/bph.12643.

Blanchard RJ, Blanchard DC. Crouching as an index of fear. Journal of Comparative and Physiological Psychology. 1969;67(3). doi: 10.1037/h0026779.

Rescorla RA, Solomon RL. Two-process learning theory: Relationships between Pavlovian conditioning and instrumental learning. Psychological Review. 1967;74(3). doi: 10.1037/h0024475.

Thorndike E. Some experiments on animal intelligence. Science. 1898;7(181). doi: 10.1126/science.7.181.818.

LeDoux JE, Moscarello J, Sears R, Campese V. The birth, death and resurrection of avoidance: a reconceptualization of a troubled paradigm. Molecular Psychiatry. 2016;22(1). doi: 10.1038/mp.2016.166.

Harrison FE, Hosseini AH, McDonald MP. Endogenous anxiety and stress responses in water maze and Barnes maze spatial memory tasks. Behavioural Brain Research. 2009;198(1). doi: 10.1016/j.bbr.2008.10.015.

Tan S, Poon CH, Chan YS, Lim LW. [PREPRINT] Deep brain stimulation of the prelimbic cortex disrupts consolidation of fear memories. bioRxiv. 2019;doi: 10.1101/537514.

Ögren SO, Stiedl O, Stolerman IP, Price LH. Passive avoidance. In: Stolerman IP, Price LH, editors. Encyclopedia of Psychopharmacology. Berlin, Heidelberg: Springer; 2015. p. 1220–1228. doi: 10.1007/978-3-642-36172-2_160.

Schier LA, Hyde KM, Spector AC, Glendinning JI. Conditioned taste aversion versus avoidance: A re-examination of the separate processes hypothesis. PLOS ONE. 2019;14(6). doi: 10.1371/journal.pone.0217458.

Baker AG, Steinwald H, Bouton ME. Contextual conditioning and reinstatement of extinguished instrumental responding. The Quarterly Journal of Experimental Psychology Section B. 1991;43(2).

Campese V, McCue M, Lázaro-Muñoz G, LeDoux JE, Cain CK. Development of an aversive Pavlovian-to-instrumental transfer task in rat. Frontiers in Behavioral Neuroscience. 2013;7. doi: 10.3389/fnbeh.2013.00176.

Tsutsui-Kimura I, Bouchekioua Y, Mimura M, Tanaka KF. A New Paradigm for Evaluating Avoidance/Escape Motivation. International Journal of Neuropsychopharmacology. 2017;20(7). doi: 10.1093/ijnp/pyx031.

Maren S, Phan KL, Liberzon I. The contextual brain: implications for fear conditioning, extinction and psychopathology. Nature Reviews Neuroscience. 2013;14(6). doi:10.1038/nrn3492.

Forcadell E, Torrents-Rodas D, Vervliet B, Leiva D, Tortella-Feliu M, Fullana MA. Does fear extinction in the laboratory predict outcomes of exposure therapy? A treatment analog study. International Journal of Psychophysiology. 2017;121. doi: 10.1016/j.ijpsycho.2017.09.001.

Hauner KK, Mineka S, Voss JL, Paller KA. Exposure therapy triggers lasting reorganization of neural fear processing. Proceedings of the National Academy of Sciences. 2012;109(23). doi: 10.1073/pnas.1205242109.

Hofmann SG, Asnaani A, Vonk IJJ, Sawyer AT, Fang A. The Efficacy of Cognitive Behavioral Therapy: A Review of Metaanalyses. Cognitive Therapy and Research. 2012;36(5). doi: 10.1007/s10608-012-9476-1.

Reinecke A, Waldenmaier L, Cooper MJ, Harmer CJ. Changes in Automatic Threat Processing Precede and Predict Clinical Changes with Exposure-Based Cognitive-Behavior Therapy for Panic Disorder. Biological Psychiatry. 2013;73(11). doi: 10.1016/j.biopsych.2013.02.005.

Wozney L, Baxter P, Newton AS. Usability evaluation with mental health professionals and young people to develop an Internet-based cognitive-behaviour therapy program for adolescents with anxiety disorders. BMC Pediatrics. 2015;15(1). doi: 10.1186/s12887-015-0534-1.

Kim JH, Ganella DE. A Review of Preclinical Studies to Understand Fear During Adolescence. Australian Psychologist. 2015;50(1). doi: 10.1111/ap.12066.

Bouton ME. Extinction of instrumental (operant) learning: interference, varieties of context, and mechanisms of contextual control. Psychopharmacology. 2018;236(1). doi: 10.1007/s00213-018-5076-4.

Milad MR, Quirk GJ. Fear Extinction as a Model for Translational Neuroscience: Ten Years of Progress. Annual Review of Psychology. 2012;63(1). doi: 10.1146/annurev.psych.121208.131631.

Meyer HC, Odriozola P, Cohodes EM, Mandell JD, Li A, Yang R, et al. Ventral hippocampus interacts with prelimbic cortex during inhibition of threat response via learned safety in both mice and humans. Proceedings of the National Academy of Sciences. 2019;116(52). doi: 10.1073/pnas.1910481116.

Zbukvic IC, Kim JH. Divergent prefrontal dopaminergic mechanisms mediate drug- and fear-associated cue extinction during adolescence versus adulthood. European Neuropsychopharmacology. 2018;28(1). doi: 10.1016/j.euroneuro.2017.11.004.

Barad M. Is extinction of fear erasure or inhibition? Why both, of course. Learning & Memory. 2006;13(2). doi: 10.1101/lm.211306.

Kim JH, Richardson R. New Findings on Extinction of Conditioned Fear Early in Development: Theoretical and Clinical Implications. Biological Psychiatry. 2010;67(4). doi: 10.1016/j.biopsych.2009.09.003.

Lin CH, Yeh SH, Lu HY, Gean PW. The Similarities and Diversities of Signal Pathways Leading to Consolidation of Conditioning and Consolidation of Extinction of Fear Memory. The Journal of Neuroscience. 2003;23(23). doi: 10.1523/jneurosci.23-23-08310.2003.

Misanin JR, Miller RR, Lewis DJ. Retrograde Amnesia Produced by Electroconvulsive Shock after Reactivation of a Consolidated Memory Trace. Science. 1968;160(3827). doi: 10.1126/science.160.3827.554.

Riccio DC, Millin PM, Bogart AR. Reconsolidation: A brief history, a retrieval view, and some recent issues. Learning & Memory. 2006;13(5). doi: 10.1101/lm.290706.

Nader K, Schafe GE, Le Doux JE. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature. 2000;406(6797). doi: 10.1038/35021052.

Milton AL, Merlo E, Ratano P, Gregory BL, Dumbreck JK, Everitt BJ. Double Dissociation of the Requirement for GluN2B- and GluN2A-Containing NMDA Receptors in the Destabilization and Restabilization of a Reconsolidating Memory. Journal of Neuroscience. 2013;33(3). doi: 10.1523/jneurosci.3273-12.2013.

Kandel ER. The Molecular Biology of Memory Storage: A Dialogue Between Genes and Synapses. Science. 2001;294(5544). doi: 10.1126/science.1067020.

Martin SJ, Morris RGM. New life in an old idea: The synaptic plasticity and memory hypothesis revisited. Hippocampus. 2002;12(5). doi: 10.1002/hipo.10107.

Hebb DO. The organization of behavior: A neuropsychological theory. New York: Jon Wiley & Sons; 1949.

Bliss TVP, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361(6407). doi: 10.1038/361031a0.

Laroche S, Jay TM, Thierry AM. Long-term potentiation in the prefrontal cortex following stimulation of the hippocampal CA1/subicular region. Neuroscience Letters. 1990;114(2). doi: 10.1016/0304-3940(90)90069-l.

Bauer EP, Schafe GE, LeDoux JE. NMDA Receptors and L-Type Voltage-Gated Calcium Channels Contribute to Long-Term Potentiation and Different Components of Fear Memory Formation in the Lateral Amygdala. The Journal of Neuroscience. 2002;22(12). doi: 10.1523/jneurosci.22-12-05239.2002.

Frankland PW, Bontempi B. The organization of recent and remote memories. Nature Reviews Neuroscience. 2005;6(2). doi: 10.1038/nrn1607.

Park CHJ, Ganella DE, Perry CJ, Kim JH. Dissociated roles of dorsal and ventral hippocampus in recall and extinction of conditioned fear in male and female juvenile rats. Experimental Neurology. 2020;329. doi: 10.1016/j.expneurol.2020.113306.

Sierra-Mercado D, Padilla-Coreano N, Quirk GJ. Dissociable Roles of Prelimbic and Infralimbic Cortices, Ventral Hippocampus, and Basolateral Amygdala in the Expression and Extinction of Conditioned Fear. Neuropsychopharmacology. 2010;36(2). doi: 10.1038/npp.2010.184.

Sotres-Bayon F, Sierra-Mercado D, Pardilla-Delgado E, Quirk GJ. Gating of Fear in Prelimbic Cortex by Hippocampal and Amygdala Inputs. Neuron. 2012;76(4). doi: 10.1016/j.neuron.2012.09.028.

Cooke SF. Plasticity in the human central nervous system. Brain. 2006;129(7). doi: 10.1093/brain/awl082.

Riaza Bermudo-Soriano C, Perez-Rodriguez MM, Vaquero-Lorenzo C, Baca-Garcia E. New perspectives in glutamate and anxiety. Pharmacology Biochemistry and Behavior. 2012;100(4). doi: 10.1016/j.pbb.2011.04.010.

Izquierdo I. Role of NMDA receptors in memory. Trends in Pharmacological Sciences. 1991;12. doi: 10.1016/0165-6147(91)90527-y.

Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, et al. Glutamate Receptor Ion Channels: Structure, Regulation, and Function. Pharmacological Reviews. 2010;62(3). doi: 10.1124/pr.109.002451.

Stawski P, Janovjak H, Trauner D. Pharmacology of ionotropic glutamate receptors: A structural perspective. Bioorganic & Medicinal Chemistry. 2010;18(22). doi: 10.1016/j.bmc.2010.09.012.

Pananceau M, Gustafsson B. NMDA receptor dependence of the input specific NMDA receptor-independent LTP in the hippocampal CA1 region. Brain Research. 1997;752(1-2). doi: 10.1016/s0006-8993(96)01471-0.

Larkin AE, Fahey B, Gobbo O, Callaghan CK, Cahill E, O’Mara SM, et al. Blockade of NMDA receptors pretraining, but not post-training, impairs object displacement learning in the rat. Brain Research. 2008;1199. doi: 10.1016/j.brainres.2008.01.019.

Sison M, Gerlai R. Associative learning performance is impaired in zebrafish (Danio rerio) by the NMDA-R antagonist MK-801. Neurobiology of Learning and Memory. 2011;96(2). doi: 10.1016/j.nlm.2011.04.016.

Rothman SM, Olney JW. Excitotoxity and the NMDA receptor. Trends in Neurosciences. 1987;10(7). doi: 10.1016/0166-2236(87)90177-9.

Lipton SA. Failures and successes of NMDA receptor antagonists: Molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults. NeuroRX. 2004;1(1). doi: 10.1602/neurorx.1.1.101.

Ori R, Amos T, Bergman H, Soares-Weiser K, Ipser JC, Stein DJ. Augmentation of cognitive and behavioural therapies (CBT) with d-cycloserine for anxiety and related disorders. Cochrane Database of Systematic Reviews. 2015;doi: 10.1002/14651858.cd007803.pub2.

Catania MV, Landwehrmeyer GB, Testa CM, Standaert DG, Penney JB, Young AB. Metabotropic glutamate receptors are differentially regulated during development. Neuroscience. 1994;61(3). doi: 10.1016/0306-4522(94)90428-6.

Romano C, Sesma MA, McDonald CT, O’malley K, van den Pol AN, Olney JW. Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain. The Journal of Comparative Neurology. 1995;355(3). doi: 10.1002/cne.903550310.

Lum JS, Fernandez F, Matosin N, Andrews JL, Huang XF, Ooi L, et al. Neurodevelopmental Expression Profile of Dimeric and Monomeric Group 1 mGluRs: Relevance to Schizophrenia Pathogenesis and Treatment. Scientific Reports. 2016;6(1). doi: 10.1038/srep34391.

Romano C, Van den Pol AN, O’Malley KL. Enhanced early developmental expression of the metabotropic glutamate receptor mGluR5 in rat brain: Protein, mRNA splice variants, and regional distribution. The Journal of Comparative Neurology. 1996;367(3). doi: 10.1002/(sici)1096-9861(19960408)367:3<403::aid-cne6>;2-9.

Kessler RC, Angermeyer M, Anthony JC, Graaf RD, Demyttenaere K, Gasquet I, et al. Lifetime prevalence and age-of-onset distributions of mental disorders in the World Health Organization’s World Mental Health Survey Initiative. World Psychiatry. 2007;6(3).

Abe T, Sugihara H, Nawa H, Shigemoto R, Mizuno N, Nakanishi S. Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. Journal of Biological Chemistry. 1992;267(19). doi: 10.1016/s0021-9258(18)42219-3.

Niswender CM, Conn PJ. Metabotropic Glutamate Receptors: Physiology, Pharmacology, and Disease. Annual Review of Pharmacology and Toxicology. 2010;50(1). doi: 10.1146/annurev.pharmtox.011008.145533.

Luccini E, Musante V, Neri E, Brambilla Bas M, Severi P, Raiteri M, et al. Functional interactions between presynaptic NMDA receptors and metabotropic glutamate receptors co-expressed on rat and human noradrenergic terminals. British Journal of Pharmacology. 2007;151(7). doi: 10.1038/sj.bjp.0707280.

Alagarsamy S, Rouse ST, Junge C, Hubert GW, Gutman D, Smith Y, et al. NMDA-induced phosphorylation and regulation of mGluR5. Pharmacology Biochemistry and Behavior. 2002;73(2). doi: 10.1016/s0091-3057(02)00826-2.

Chen HH, Liao PF, Chan MH. mGluR5 positive modulators both potentiate activation and restore inhibition in NMDA receptors by PKC dependent pathway. Journal of Biomedical Science. 2011;18(1). doi: 10.1186/1423-0127-18-19.

Lu YM, Jia Z, Janus C, Henderson JT, Gerlai R, Wojtowicz JM, et al. Mice Lacking Metabotropic Glutamate Receptor 5 Show Impaired Learning and Reduced CA1 Long-Term Potentiation (LTP) But Normal CA3 LTP. The Journal of Neuroscience. 1997;17(13). doi: 10.1523/jneurosci.17-13-05196.1997.

Francesconi W, Cammalleri M, Sanna PP. The metabotropic glutamate receptor 5 is necessary for late-phase long-term potentiation in the hippocampal CA1 region. Brain Research. 2004;1022(1-2). doi: 10.1016/j.brainres.2004.06.060.

Naie K. Regulation by Metabotropic Glutamate Receptor 5 of LTP in the Dentate Gyrus of Freely Moving Rats: Relevance for Learning and Memory Formation. Cerebral Cortex. 2004;14(2). doi: 10.1093/cercor/bhg118.

O’Mara SM, Rowan MJ, Anwyl R. Metabotropic glutamate receptor-induced homosynaptic long-term depression and depotentiation in the dentate gyrus of the rat hippocampus in vitro. Neuropharmacology. 1995;34(8). doi: 10.1016/0028-3908(95)00062-b.

Hong I, Song B, Lee S, Kim J, Kim J, Choi S. Extinction of cued fear memory involves a distinct form of depotentiation at cortical input synapses onto the lateral amygdala. European Journal of Neuroscience. 2009;30(11). doi: 10.1111/j.1460-9568.2009.07004.x.

Kim J, Lee S, Park K, Hong I, Song B, Son G, et al. Amygdala depotentiation and fear extinction. Proceedings of the National Academy of Sciences. 2007;104(52). doi: 10.1073/pnas.0710548105.

Lin CH, Lee CC, Gean PW. Involvement of a Calcineurin Cascade in Amygdala Depotentiation and Quenching of Fear Memory. Molecular Pharmacology. 2003;63(1). doi: 10.1124/mol.63.1.44.

Zhu G, Briz V, Seinfeld J, Liu Y, Bi X, Baudry M. Calpain-1 deletion impairs mGluR-dependent LTD and fear memory extinction. Scientific Reports. 2017;7(1). doi: 10.1038/srep42788.

Kim JH, Perry CJ, Ganella DE, Madsen HB. Postnatal development of neurotransmitter systems and their relevance to extinction of conditioned fear. Neurobiology of Learning and Memory. 2017;138. doi: 10.1016/j.nlm.2016.10.018.

Shigemoto R, Nomura S, Ohishi H, Sugihara H, Nakanishi S, Mizuno N. Immunohistochemical localization of a metabotropic glutamate receptor, mGluR5, in the rat brain. Neuroscience Letters. 1993;163(1). doi: 10.1016/0304-3940(93)90227-c.

Ayala JE, Chen Y, Banko JL, Sheffler DJ, Williams R, Telk AN, et al. mGluR5 Positive Allosteric Modulators Facilitate both Hippocampal LTP and LTD and Enhance Spatial Learning. Neuropsychopharmacology. 2009;34(9). doi: 10.1038/npp.2009.30.

Ballard TM, Woolley ML, Prinssen E, Huwyler J, Porter R, Spooren W. The effect of the mGlu5 receptor antagonist MPEP in rodent tests of anxiety and cognition: a comparison. Psychopharmacology. 2005;179(1). doi: 10.1007/s00213-005-2211-9.

Car H, Stefaniuk R, Wiśniewska RJ. Effect of MPEP in Morris water maze in adult and old rats. Pharmacological Reports. 2007;59(1).

Bird MK, Lohmann P, West B, Brown RM, Kirchhoff J, Raymond CR, et al. The mGlu5 receptor regulates extinction of cocaine-driven behaviours. Drug and Alcohol Dependence. 2014;137. doi: 10.1016/j.drugalcdep.2014.01.017.

Tan SZK, Ganella DE, Dick ALW, Duncan JR, Ong-Palsson E, Bathgate RAD, et al. Spatial Learning Requires mGlu5 Signalling in the Dorsal Hippocampus. Neurochemical Research. 2015;40(6). doi: 10.1007/s11064-015-1595-0.

Schulz B, Fendt M, Gasparini F, Lingenhöhl K, Kuhn R, Koch M. The metabotropic glutamate receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) blocks fear conditioning in rats. Neuropharmacology. 2001;41(1). doi: 10.1016/s0028-3908(01)00036-3.

Handford CE, Tan S, Lawrence AJ, Kim JH. The effect of the mGlu5 negative allosteric modulator MTEP and NMDA receptor partial agonist D-cycloserine on Pavlovian conditioned fear. The International Journal of Neuropsychopharmacology. 2014;17(09). doi: 10.1017/s1461145714000303.

Gravius A, Pietraszek M, Sch??fer D, Schmidt WJ, Danysz W. Effects of mGlu1 and mGlu5 receptor antagonists on negatively reinforced learning. Behavioural Pharmacology. 2005;16(2). doi: 10.1097/00008877-200503000-00007.

Xu J, Zhu Y, Contractor A, Heinemann SF. mGluR5 Has a Critical Role in Inhibitory Learning. Journal of Neuroscience. 2009;29(12). doi: 10.1523/jneurosci.5716-08.2009.

Fowler SW, Ramsey AK, Walker JM, Serfozo P, Olive MF, Schachtman TR, et al. Functional interaction of mGlu5 and NMDA receptors in aversive learning in rats. Neurobiology of Learning and Memory. 2011;95(1). doi: 10.1016/j.nlm.2010.11.009.

Maciejak P, Taracha E, Lehner M, Szyndler J, Bidziński A, Skórzewska A, et al. Hippocampal mGluR1 and consolidation of contextual fear conditioning. Brain Research Bulletin. 2003;62(1). doi: 10.1016/j.brainresbull.2003.08.003.

O’Riordan KJ, Hu NW, Rowan MJ. Physiological activation of mGlu5 receptors supports the ion channel function of NMDA receptors in hippocampal LTD induction in vivo. Scientific Reports. 2018;8(1). doi: 10.1038/s41598-018-22768-x.

Ge Y, Dong Z, Bagot RC, Howland JG, Phillips AG, Wong TP, et al. Hippocampal long-term depression is required for the consolidation of spatial memory. Proceedings of the National Academy of Sciences. 2010;107(38). doi: 10.1073/pnas.1008200107.

Sethna F, Wang H. Pharmacological enhancement of mGluR5 facilitates contextual fear memory extinction. Learning & Memory. 2014;21(12). doi: 10.1101/lm.035857.114.

Fontanez-Nuin DE, Santini E, Quirk GJ, Porter JT. Memory for Fear Extinction Requires mGluR5-Mediated Activation of Infralimbic Neurons. Cerebral Cortex. 2010;21(3). doi: 10.1093/cercor/bhq147.

Xu J, Zhu Y, Kraniotis S, He Q, Marshall JJ, Nomura T, et al. Potentiating mGluR5 function with a positive allosteric modulator enhances adaptive learning. Learning & Memory. 2013;20(8). doi: 10.1101/lm.031666.113.

Ganella DE, Thangaraju P, Lawrence AJ, Kim JH. Fear extinction in 17 day old rats is dependent on metabotropic glutamate receptor 5 signaling. Behavioural Brain Research. 2016;298. doi: 10.1016/j.bbr.2014.12.010.

Brunet A, Orr SP, Tremblay J, Robertson K, Nader K, Pitman RK. Effect of post-retrieval propranolol on psychophysiologic responding during subsequent script-driven traumatic imagery in post-traumatic stress disorder. Journal of Psychiatric Research. 2008;42(6). doi: 10.1016/j.jpsychires.2007.05.006.

Kindt M, Soeter M, Vervliet B. Beyond extinction: erasing human fear responses and preventing the return of fear. Nature Neuroscience. 2009;12(3). doi: 10.1038/nn.2271.

Monfils MH, Cowansage KK, Klann E, LeDoux JE. Extinction-Reconsolidation Boundaries: Key to Persistent Attenuation of Fear Memories. Science. 2009;324(5929). doi: 10.1126/science.1167975.

Schiller D, Monfils MH, Raio CM, Johnson DC, LeDoux JE, Phelps EA. Preventing the return of fear in humans using reconsolidation update mechanisms. Nature. 2009;463(7277). doi: 10.1038/nature08637.

Tan SZK, Sheng V, Chan YS, Lim LW. Eternal sunshine of the neuromodulated mind: Altering fear memories through neuromodulation. Experimental Neurology. 2019;314. doi: 10.1016/j.expneurol.2019.01.004.

Meyer JM, Farrell NR, Kemp JJ, Blakey SM, Deacon BJ. Why do clinicians exclude anxious clients from exposure therapy? Behaviour Research and Therapy. 2014;54. doi: 10.1016/j.brat.2014.01.004.

Pedreira ME, Maldonado H. Protein Synthesis Subserves Reconsolidation or Extinction Depending on Reminder Duration. Neuron. 2003;38(6). doi: 10.1016/s0896-6273(03)00352-0.

LeDoux J. Anxious. London: Oneworld; 2015.

Yap JJ, Covington HE, Gale MC, Datta R, Miczek KA. Behavioral sensitization due to social defeat stress in mice: antagonism at mGluR5 and NMDA receptors. Psychopharmacology. 2004;179(1). doi: 10.1007/s00213-004-2023-3.

Shin S, Kwon O, Kang JI, Kwon S, Oh S, Choi J, et al. mGluR5 in the nucleus accumbens is critical for promoting resilience to chronic stress. Nature Neuroscience. 2015;18(7). doi: 10.1038/nn.4028.

Wagner KV, Hartmann J, Labermaier C, Häusl AS, Zhao G, Harbich D, et al. Homer1/mGluR5 Activity Moderates Vulnerability to Chronic Social Stress. Neuropsychopharmacology. 2014;40(5). doi: 10.1038/npp.2014.308.

Olive MF. Cognitive effects of Group I metabotropic glutamate receptor ligands in the context of drug addiction. European Journal of Pharmacology. 2010;639(1-3). doi: 10.1016/j.ejphar.2010.01.029.

Kessler RC, Ormel J, Petukhova M, McLaughlin KA, Green JG, Russo LJ, et al. Development of Lifetime Comorbidity in the World Health Organization World Mental Health Surveys. Archives of General Psychiatry. 2011;68(1). doi: 10.1001/archgenpsychiatry.2010.180.

Perry CJ, Campbell EJ, Drummond KD, Lum JS, Kim JH. Sex differences in the neurochemistry of frontal cortex: Impact of early life stress. Journal of Neurochemistry. 2020;doi: 10.1111/jnc.15208.

Kessler RC. Lifetime and 12-Month Prevalence of DSMIII-R Psychiatric Disorders in the United States. Archives of General Psychiatry. 1994;51(1). doi: 10.1001/archpsyc.1994.03950010008002.

McLean CP, Asnaani A, Litz BT, Hofmann SG. Gender differences in anxiety disorders: Prevalence, course of illness, comorbidity and burden of illness. Journal of Psychiatric Research. 2011;45(8). doi: 10.1016/j.jpsychires.2011.03.006.

Baran SE, Armstrong CE, Niren DC, Conrad CD. Prefrontal cortex lesions and sex differences in fear extinction and perseveration. Learning & Memory. 2010;17(5). doi: 10.1101/lm.1778010.

Gupta RR, Sen S, Diepenhorst LL, Rudick CN, Maren S. Estrogen modulates sexually dimorphic contextual fear conditioning and hippocampal long-term potentiation (LTP) in rats. Brain Research. 2001;888(2). doi: 10.1016/s0006-8993(00)03116-4.

Park CHJ, Ganella DE, Kim JH. A dissociation between renewal and contextual fear conditioning in juvenile rats. Developmental Psychobiology. 2017;59(4). doi: 10.1002/dev.21516.

Wiltgen BJ, Sanders MJ, Behne NS, Fanselow MS. Sex differences, context preexposure, and the immediate shock deficit in Pavlovian context conditioning with mice. Behavioral Neuroscience. 2001;115(1). doi: 10.1037/0735-7044.115.1.26.

Perry CJ, Ganella DE, Nguyen LD, Du X, Drummond KD, Whittle S, et al. Assessment of conditioned fear extinction in male and female adolescent rats. Psychoneuroendocrinology. 2020;116. doi: 10.1016/j.psyneuen.2020.104670.

Gerstein H, O’Riordan K, Osting S, Schwarz M, Burger C. Rescue of synaptic plasticity and spatial learning deficits in the hippocampus of Homer1 knockout mice by recombinant Adeno-associated viral gene delivery of Homer1c. Neurobiology of Learning and Memory. 2012;97(1). doi: 10.1016/j.nlm.2011.08.009.

Inda MC, Muravieva EV, Alberini CM. Memory Retrieval and the Passage of Time: From Reconsolidation and Strengthening to Extinction. Journal of Neuroscience. 2011;31(5). doi: 10.1523/jneurosci.4736-10.2011.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 Shawn Tan, Jee Hyun Kim


Download data is not yet available.