Schizophrenia and drug addiction comorbidity: recent advances in our understanding of behavioural susceptibility and neural mechanisms
PDF
XML

Keywords

schizophrenia
drug addiction
drug abuse
rodent model
behavior
molecular

How to Cite

Menne, V., & Chesworth, R. (2020). Schizophrenia and drug addiction comorbidity: recent advances in our understanding of behavioural susceptibility and neural mechanisms. Neuroanatomy and Behaviour, 2(1), e10. https://doi.org/10.35430/nab.2020.e10

Abstract

Schizophrenia is a severe psychiatric disorder which is worsened substantially by substance abuse/addiction. Substance abuse affects nearly 50% of individuals with schizophrenia, extends across several drug classes (e.g. nicotine, cannabinoids, ethanol, psychostimulants) and worsens overall functioning of patients. Prominent theories explaining schizophrenia and addiction comorbidity include the primary addiction hypothesis (i.e. schizophrenia susceptibility primes drug reward circuits, increasing drug addiction risk following drug exposure), the two-hit hypothesis (i.e. drug abuse and other genetic and/or environmental risk factors contribute to schizophrenia development) and the self-medication hypothesis (i.e. drug use alleviates schizophrenia symptoms). Animal models can be used to evaluate the utility and validity of these theories. Since this literature was last reviewed by Ng and colleagues in 2013 [Neurosci Biobehav Rev, 37(5)], significant advances have been made to our understanding of schizophrenia and substance abuse comorbidity. Here we review advances in the field since 2013, focussing on two key questions: 1) Does schizophrenia susceptibility increase susceptibility to drug addiction (assessing the primary addiction hypothesis), and 2) Do abused drugs exacerbate or ameliorate schizophrenia symptoms (assessing the two-hit hypothesis and the self-medication hypothesis). We addressed these questions using data from several schizophrenia preclinical models (e.g. genetic, lesion, neurodevelopmental, pharmacological) across drug classes (e.g. nicotine, cannabinoids, ethanol, psychostimulants). We conclude that addiction-like behaviour is present in several preclinical schizophrenia models, and drugs of abuse can exacerbate but also ameliorate schizophrenia-relevant behaviours. These behavioural changes are associated with altered receptor system function (e.g. dopaminergic, glutamatergic, GABAergic) critically implicated in schizophrenia and addiction pathology.

https://doi.org/10.35430/nab.2020.e10
PDF
XML

References

Perala J, Suvisaari J, Saarni SI, Kuoppasalmi K, Isometsa E, Pirkola S, et al. Lifetime prevalence of psychotic and bipolar I disorders in a general population. Arch Gen Psychiatry. 2007;64(1):19-28. doi: 10.1001/archpsyc.64.1.19.

Andreasen NC. Symptoms, signs, and diagnosis of schizophrenia. Lancet. 1995;346(8973):477-81. doi: 10.1016/s0140-6736(95)91325-4.

Abel KM, Drake R, Goldstein JM. Sex differences in schizophrenia. Int Rev Psychiatry. 2010;22(5):417-28. doi: 10.3109/09540261.2010.515205.

Hunt GE, Large MM, Cleary M, Lai HMX, Saunders JB. Prevalence of comorbid substance use in schizophrenia spectrum disorders in community and clinical settings, 1990-2017: Systematic review and meta-analysis. Drug Alcohol Depend. 2018;191:234-58. doi: 10.1016/j.drugalcdep.2018.07.011.

Volkow ND. Substance use disorders in schizophrenia--clinical implications of comorbidity. Schizophrenia bulletin. 2009;35(3):469-72. doi: 10.1093/schbul/sbp016.

Kovasznay B, Fleischer J, Tanenberg-Karant M, Jandorf L, Miller AD, Bromet E. Substance use disorder and the early course of illness in schizophrenia and affective psychosis. Schizophrenia bulletin. 1997;23(2):195-201. doi: 10.1093/schbul/23.2.195.

Addington J, Addington D. Substance abuse and cognitive functioning in schizophrenia. J Psychiatry Neurosci. 1997;22(2):99-104.

Hunt GE, Bergen J, Bashir M. Medication compliance and comorbid substance abuse in schizophrenia: impact on community survival 4 years after a relapse. Schizophr Res. 2002;54(3):253-64. doi: 10.1016/s0920-9964(01)00261-4.

Swartz MS, Wagner HR, Swanson JW, Stroup TS, McEvoy JP, Canive JM, et al. Substance use in persons with schizophrenia: baseline prevalence and correlates from the NIMH CATIE study. J Nerv Ment Dis. 2006;194(3):164-72. doi: 10.1097/01.nmd.0000202575.79453.6e.

Schmidt LM, Hesse M, Lykke J. The impact of substance use disorders on the course of schizophrenia--a 15-year follow-up study: dual diagnosis over 15 years. Schizophr Res. 2011;130(1-3):228-33. doi: 10.1016/j.schres.2011.04.011.

Janssen B, Gaebel W, Haerter M, Komaharadi F, Lindel B, Weinmann S. Evaluation of factors influencing medication compliance in inpatient treatment of psychotic disorders. Psychopharmacology (Berl). 2006;187(2):229-36. doi: 10.1007/s00213-006-0413-4.

Khokhar JY, Dwiel LL, Henricks AM, Doucette WT, Green AI. The link between schizophrenia and substance use disorder: A unifying hypothesis. Schizophr Res. 2018;194:78-85. doi: 10.1016/j.schres.2017.04.016.

Green AI, Drake RE, Brunette MF, Noordsy DL. Schizophrenia and co-occurring substance use disorder. Am J Psychiatry. 2007;164(3):402-8. doi: 10.1176/ajp.2007.164.3.402.

Khantzian EJ. The self-medication hypothesis of substance use disorders: a reconsideration and recent applications. Harv Rev Psychiatry. 1997;4(5):231-44. doi: 10.3109/10673229709030550.

Boggs DL, Surti TS, Esterlis I, Pittman B, Cosgrove K, Sewell RA, et al. Minimal effects of prolonged smoking abstinence or resumption on cognitive performance challenge the "self-medication" hypothesis in schizophrenia. Schizophr Res. 2018;194:62-9. doi: 10.1016/j.schres.2017.03.047.

Rabin RA, Kozak K, Zakzanis KK, Remington G, George TP. Effects of extended cannabis abstinence on clinical symptoms in cannabis dependent schizophrenia patients versus non-psychiatric controls. Schizophr Res. 2018;194:55-61. doi: 10.1016/j.schres.2017.03.010.

Chambers RA, Krystal JH, Self DW. A neurobiological basis for substance abuse comorbidity in schizophrenia. Biol Psychiatry. 2001;50(2):71-83. doi: 10.1016/s0006-3223(01)01134-9.

Bayer TA, Falkai P, Maier W. Genetic and non-genetic vulnerability factors in schizophrenia: the basis of the "two hit hypothesis". J Psychiatr Res. 1999;33(6):543-8. doi: 10.1016/s0022-3956(99)00039-4.

Mueser KT, Yarnold PR, Levinson DF, Singh H, Bellack AS, Kee K, et al. Prevalence of substance abuse in schizophrenia: demographic and clinical correlates. Schizophrenia bulletin. 1990;16(1):31-56. doi: 10.1093/schbul/16.1.31.

Jones CA, Watson DJ, Fone KC. Animal models of schizophrenia. Br J Pharmacol. 2011;164(4):1162-94. doi: 10.1111/j.1476-5381.2011.01386.x.

Lewis DA, Levitt P. Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci. 2002;25:409-32. doi: 10.1146/annurev.neuro.25.112701.142754.

Pearlson GD. Neurobiology of schizophrenia. Ann Neurol. 2000;48(4):556-66. doi: 10.1002/1531-8249(200010)48:4<556::AID-ANA2>3.0.CO;2-2.

Pratt J, Winchester C, Dawson N, Morris B. Advancing schizophrenia drug discovery: optimizing rodent models to bridge the translational gap. Nat Rev Drug Discov. 2012;11(7):560-79. doi: 10.1038/nrd3649.

Foussias G, Siddiqui I, Fervaha G, Agid O, Remington G. Dissecting negative symptoms in schizophrenia: opportunities for translation into new treatments. J Psychopharmacol. 2015;29(2):116-26. doi: 10.1177/0269881114562092.

Javitt DC. Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int Rev Neurobiol. 2007;78:69-108. doi: 10.1016/S0074-7742(06)78003-5.

Bussey TJ, Holmes A, Lyon L, Mar AC, McAllister KA, Nithianantharajah J, et al. New translational assays for preclinical modelling of cognition in schizophrenia: the touchscreen testing method for mice and rats. Neuropharmacology. 2012;62(3):1191-203. doi: 10.1016/j.neuropharm.2011.04.011.

Kim CH, Hvoslef-Eide M, Nilsson SR, Johnson MR, Herbert BR, Robbins TW, et al. The continuous performance test (rCPT) for mice: a novel operant touchscreen test of attentional function. Psychopharmacology (Berl). 2015;232(21-22):3947-66. doi: 10.1007/s00213-015-4081-0.

Bardo MT, Bevins RA. Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology (Berl). 2000;153(1):31-43. doi: 10.1007/s002130000569.

Huston JP, Silva MA, Topic B, Muller CP. What's conditioned in conditioned place preference? Trends Pharmacol Sci. 2013;34(3):162-6. doi: 10.1016/j.tips.2013.01.004.

Tzschentke TM. Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog Neurobiol. 1998;56(6):613-72. doi: 10.1016/s0301-0082(98)00060-4.

Tzschentke TM. Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol. 2007;12(3-4):227-462. doi: 10.1111/j.1369-1600.2007.00070.x.

Robinson TE, Berridge KC. The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction. 2000;95 Suppl 2:S91-117. doi: 10.1080/09652140050111681.

Vezina P, Leyton M. Conditioned cues and the expression of stimulant sensitization in animals and humans. Neuropharmacology. 2009;56 Suppl 1:160-8. doi: 10.1016/j.neuropharm.2008.06.070.

Steketee JD, Kalivas PW. Drug wanting: behavioral sensitization and relapse to drug-seeking behavior. Pharmacol Rev. 2011;63(2):348-65. doi: 10.1124/pr.109.001933.

Thomsen M, Caine SB. Intravenous drug self-administration in mice: practical considerations. Behav Genet. 2007;37(1):101-18. doi: 10.1007/s10519-006-9097-0.

Farrell MR, Schoch H, Mahler SV. Modeling cocaine relapse in rodents: Behavioral considerations and circuit mechanisms. Prog Neuropsychopharmacol Biol Psychiatry. 2018;87(Pt A):33-47. doi: 10.1016/j.pnpbp.2018.01.002.

Negus SS, Miller LL. Intracranial self-stimulation to evaluate abuse potential of drugs. Pharmacol Rev. 2014;66(3):869-917. doi: 10.1124/pr.112.007419.

Carlezon WA, Jr., Chartoff EH. Intracranial self-stimulation (ICSS) in rodents to study the neurobiology of motivation. Nat Protoc. 2007;2(11):2987-95. doi: 10.1038/nprot.2007.441.

Ng E, McGirr A, Wong AH, Roder JC. Using rodents to model schizophrenia and substance use comorbidity. Neurosci Biobehav Rev. 2013;37(5):896-910. doi: 10.1016/j.neubiorev.2013.03.025.

Schneider M. Adolescence as a vulnerable period to alter rodent behavior. Cell Tissue Res. 2013;354(1):99-106. doi: 10.1007/s00441-013-1581-2.

Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nat Neurosci. 2010;13(10):1161-9. doi: 10.1038/nn.2647.

Hoffman KL. Role of murine models in psychiatric illness drug discovery: a dimensional view. Expert opinion on drug discovery. 2013;8(7):865-77. doi: 10.1517/17460441.2013.797959.

Keller RW, Jr., Maisonneuve IM, Carlson JN, Glick SD. Within-subject sensitization of striatal dopamine release after a single injection of cocaine: an in vivo microdialysis study. Synapse. 1992;11(1):28-34. doi: 10.1002/syn.890110105.

Kashihara K, Hamamura T, Okumura K, Otsuki S. Methamphetamine-induced dopamine release in the medial frontal cortex of freely moving rats. Jpn J Psychiatry Neurol. 1991;45(3):677-80. doi: 10.1111/j.1440-1819.1991.tb01190.x.

Remington G, Agid O, Foussias G. Schizophrenia as a disorder of too little dopamine: implications for symptoms and treatment. Expert Rev Neurother. 2011;11(4):589-607. doi: 10.1586/ern.10.191.

Brunelin J, Fecteau S, Suaud-Chagny MF. Abnormal striatal dopamine transmission in schizophrenia. Curr Med Chem. 2013;20(3):397-404. doi: 10.2174/0929867311320030011.

Seeman P. Schizophrenia thalamus imaging: low benzamide binding to dopamine D2 receptors suggests fewer D2Short receptors and fewer presynaptic terminals. Psychiatry Res. 2013;214(3):175-80. doi: 10.1016/j.pscychresns.2013.09.013.

Clark AM, Leroy F, Martyniuk KM, Feng W, McManus E, Bailey MR, et al. Dopamine D2 Receptors in the Paraventricular Thalamus Attenuate Cocaine Locomotor Sensitization. eNeuro. 2017;4(5). doi: 10.1523/ENEURO.0227-17.2017.

Dahoun T, Trossbach SV, Brandon NJ, Korth C, Howes OD. The impact of Disrupted-in-Schizophrenia 1 (DISC1) on the dopaminergic system: a systematic review. Transl Psychiatry. 2017;7(1):e1015. doi: 10.1038/tp.2016.282.

Brandon NJ, Sawa A. Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat Rev Neurosci. 2011;12(12):707-22. doi: 10.1038/nrn3120.

Wong AH, Josselyn SA. Caution When Diagnosing Your Mouse With Schizophrenia: The Use and Misuse of Model Animals for Understanding Psychiatric Disorders. Biol Psychiatry. 2016;79(1):32-8. doi: 10.1016/j.biopsych.2015.04.023.

Gancarz A, Jouroukhin Y, Saito A, Shevelkin A, Mueller LE, Kamiya A, et al. DISC1 signaling in cocaine addiction: Towards molecular mechanisms of co-morbidity. Neuroscience research. 2016;105:70-4. doi: 10.1016/j.neures.2015.09.001.

Lee KY, Ahn YM, Joo EJ, Joo YH, Chang JS, Yoo HY, et al. Partial evidence of an association between epidermal growth factor A61G polymorphism and age at onset in male schizophrenia. Neuroscience research. 2006;56(4):356-62. doi: 10.1016/j.neures.2006.08.004.

Hanninen K, Katila H, Anttila S, Rontu R, Maaskola J, Hurme M, et al. Epidermal growth factor a61g polymorphism is associated with the age of onset of schizophrenia in male patients. J Psychiatr Res. 2007;41(1-2):8-14. doi: 10.1016/j.jpsychires.2005.07.001.

Eda T, Mizuno M, Araki K, Iwakura Y, Namba H, Sotoyama H, et al. Neurobehavioral deficits of epidermal growth factor-overexpressing transgenic mice: impact on dopamine metabolism. Neurosci Lett. 2013;547:21-5. doi: 10.1016/j.neulet.2013.04.055.

Balu DT. The NMDA Receptor and Schizophrenia: From Pathophysiology to Treatment. In: Schwarcz R, Coyle JT, editors. Neuropharmacology: a tribute to Joseph T. Coyle. vol. 76 of Advances in Pharmacology. Amsterdam: Academic Press; 2016. p. 351–82. doi: 10.1016/bs.apha.2016.01.006.

Puhl MD, Berg AR, Bechtholt AJ, Coyle JT. Availability of N-Methyl-d-Aspartate Receptor Coagonists Affects Cocaine-Induced Conditioned Place Preference and Locomotor Sensitization: Implications for Comorbid Schizophrenia and Substance Abuse. The Journal of pharmacology and experimental therapeutics. 2015;353(3):465-70. doi: 10.1124/jpet.115.223099.

Singer P, Yee BK, Feldon J, Iwasato T, Itohara S, Grampp T, et al. Altered mnemonic functions and resistance to N-METHYL-d-Aspartate receptor antagonism by forebrain conditional knockout of glycine transporter 1. Neuroscience. 2009;161(2):635-54. doi: 10.1016/j.neuroscience.2009.03.056.

Yee BK, Balic E, Singer P, Schwerdel C, Grampp T, Gabernet L, et al. Disruption of glycine transporter 1 restricted to forebrain neurons is associated with a procognitive and antipsychotic phenotypic profile. J Neurosci. 2006;26(12):3169-81. doi: 10.1523/JNEUROSCI.5120-05.2006.

Puhl MD, Mintzopoulos D, Jensen JE, Gillis TE, Konopaske GT, Kaufman MJ, et al. In vivo magnetic resonance studies reveal neuroanatomical and neurochemical abnormalities in the serine racemase knockout mouse model of schizophrenia. Neurobiol Dis. 2015;73:269-74. doi: 10.1016/j.nbd.2014.10.009.

Matveeva TM, Pisansky MT, Young A, Miller RF, Gewirtz JC. Sociality deficits in serine racemase knockout mice. Brain Behav. 2019;9(10):e01383. doi: 10.1002/brb3.1383.

Basu AC, Tsai GE, Ma CL, Ehmsen JT, Mustafa AK, Han L, et al. Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Mol Psychiatry. 2009;14(7):719-27. doi: 10.1038/mp.2008.130.

Puhl MD, Desai RI, Takagi S, Presti KT, Doyle MR, Donahue RJ, et al. N-Methyl-d-aspartate receptor co-agonist availability affects behavioral and neurochemical responses to cocaine: insights into comorbid schizophrenia and substance abuse. Addict Biol. 2019;24(1):40-50. doi: 10.1111/adb.12577.

Benneyworth MA, Coyle JT. Altered acquisition and extinction of amphetamine-paired context conditioning in genetic mouse models of altered NMDA receptor function. Neuropsychopharmacology. 2012;37(11):2496-504. doi: 10.1038/npp.2012.108.

Brady AM. The Neonatal Ventral Hippocampal Lesion (NVHL) Rodent Model of Schizophrenia. Curr Protoc Neurosci. 2016;77:9 55 1-9 17. doi: 10.1002/cpns.15.

Tseng KY, Chambers RA, Lipska BK. The neonatal ventral hippocampal lesion as a heuristic neurodevelopmental model of schizophrenia. Behav Brain Res. 2009;204(2):295-305. doi: 10.1016/j.bbr.2008.11.039.

Lipska BK, Weinberger DR. To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology. 2000;23(3):223-39. doi: 10.1016/S0893-133X(00)00137-8.

Lipska BK, Weinberger DR. A neurodevelopmental model of schizophrenia: neonatal disconnection of the hippocampus. Neurotox Res. 2002;4(5-6):469-75. doi: 10.1080/1029842021000022089.

Gallo A, Bouchard C, Fortier E, Ducrot C, Rompre PP. Cannabinoids reward sensitivity in a neurodevelopmental animal model of schizophrenia: a brain stimulation reward study. Eur Neuropsychopharmacol. 2014;24(9):1534-45. doi: 10.1016/j.euroneuro.2014.07.003.

Brady AM, McCallum SE, Glick SD, O'Donnell P. Enhanced methamphetamine self-administration in a neurodevelopmental rat model of schizophrenia. Psychopharmacology (Berl). 2008;200(2):205-15. doi: 10.1007/s00213-008-1195-7.

Chambers RA, McClintick JN, Sentir AM, Berg SA, Runyan M, Choi KH, et al. Cortical-striatal gene expression in neonatal hippocampal lesion (NVHL)-amplified cocaine sensitization. Genes Brain Behav. 2013;12(5):564-75. doi: 10.1111/gbb.12051.

Rao KN, Sentir AM, Engleman EA, Bell RL, Hulvershorn LA, Breier A, et al. Toward early estimation and treatment of addiction vulnerability: radial arm maze and N-acetyl cysteine before cocaine sensitization or nicotine self-administration in neonatal ventral hippocampal lesion rats. Psychopharmacology (Berl). 2016;233(23-24):3933-45. doi: 10.1007/s00213-016-4421-8.

Karlsson RM, Kircher DM, Shaham Y, O'Donnell P. Exaggerated cue-induced reinstatement of cocaine seeking but not incubation of cocaine craving in a developmental rat model of schizophrenia. Psychopharmacology (Berl). 2013;226(1):45-51. doi: 10.1007/s00213-012-2882-y.

Berg SA, Sentir AM, Cooley BS, Engleman EA, Chambers RA. Nicotine is more addictive, not more cognitively therapeutic in a neurodevelopmental model of schizophrenia produced by neonatal ventral hippocampal lesions. Addict Biol. 2014;19(6):1020-31. doi: 10.1111/adb.12082.

Sentir AM, Bell RL, Engleman EA, Chambers RA. Polysubstance addiction vulnerability in mental illness: Concurrent alcohol and nicotine self-administration in the neurodevelopmental hippocampal lesion rat model of schizophrenia. Addict Biol. 2018. doi: 10.1111/adb.12704.

Duncan SC, Alpert A, Duncan TE, Hops H. Adolescent alcohol use development and young adult outcomes. Drug Alcohol Depend. 1997;49(1):39-48. doi: 10.1016/s0376-8716(97)00137-3.

Jeanblanc J, Balguerie K, Coune F, Legastelois R, Jeanblanc V, Naassila M. Light alcohol intake during adolescence induces alcohol addiction in a neurodevelopmental model of schizophrenia. Addict Biol. 2015;20(3):490-9. doi: 10.1111/adb.12146.

Khokhar JY, Todd TP. Behavioral predictors of alcohol drinking in a neurodevelopmental rat model of schizophrenia and co-occurring alcohol use disorder. Schizophr Res. 2018;194:91-7. doi: 10.1016/j.schres.2017.02.029.

Spiller KJ, Bi GH, He Y, Galaj E, Gardner EL, Xi ZX. Cannabinoid CB1 and CB2 receptor mechanisms underlie cannabis reward and aversion in rats. Br J Pharmacol. 2019;176(9):1268-81. doi: 10.1111/bph.14625.

Ksir C, Hart CL. Cannabis and Psychosis: a Critical Overview of the Relationship. Curr Psychiatry Rep. 2016;18(2):12. doi: 10.1007/s11920-015-0657-y.

Hamilton I. Cannabis, psychosis and schizophrenia: unravelling a complex interaction. Addiction. 2017;112(9):1653-7. doi: 10.1111/add.13826.

Valjent E, Maldonado R. A behavioural model to reveal place preference to delta 9-tetrahydrocannabinol in mice. Psychopharmacology (Berl). 2000;147(4):436-8. doi: 10.1007/s002130050013.

Vlachou S, Nomikos GG, Stephens DN, Panagis G. Lack of evidence for appetitive effects of Delta 9-tetrahydrocannabinol in the intracranial self-stimulation and conditioned place preference procedures in rodents. Behav Pharmacol. 2007;18(4):311-9. doi: 10.1097/FBP.0b013e3282186cf2.

Hempel BJ, Wakeford AG, Clasen MM, Friar MA, Riley AL. Delta-9-tetrahydrocannabinol (THC) history fails to affect THC's ability to induce place preferences in rats. Pharmacol Biochem Behav. 2016;144:1-6. doi: 10.1016/j.pbb.2016.02.007.

Gallo A, Bouchard C, Rompre PP. Animals with a schizophrenia-like phenotype are differentially sensitive to the motivational effects of cannabinoid agonists in conditioned place preference. Behav Brain Res. 2014;268:202-12. doi: 10.1016/j.bbr.2014.04.020.

Govaerts SJ, Hermans E, Lambert DM. Comparison of cannabinoid ligands affinities and efficacies in murine tissues and in transfected cells expressing human recombinant cannabinoid receptors. Eur J Pharm Sci. 2004;23(3):233-43. doi: 10.1016/j.ejps.2004.07.013.

Meyer U. Prenatal poly(i:C) exposure and other developmental immune activation models in rodent systems. Biol Psychiatry. 2014;75(4):307-15. doi: 10.1016/j.biopsych.2013.07.011.

Meyer U, Yee BK, Feldon J. The neurodevelopmental impact of prenatal infections at different times of pregnancy: the earlier the worse? Neuroscientist. 2007;13(3):241-56. doi: 10.1177/1073858406296401.

Borcoi AR, Patti CL, Zanin KA, Hollais AW, Santos-Baldaia R, Ceccon LM, et al. Effects of prenatal immune activation on amphetamine-induced addictive behaviors: Contributions from animal models. Prog Neuropsychopharmacol Biol Psychiatry. 2015;63:63-9. doi: 10.1016/j.pnpbp.2015.05.015.

Chen L, Perez SM, Lodge DJ. An augmented dopamine system function is present prior to puberty in the methylazoxymethanol acetate rodent model of schizophrenia. Dev Neurobiol. 2014;74(9):907-17. doi: 10.1002/dneu.22172.

Labouesse MA, Langhans W, Meyer U. Abnormal context-reward associations in an immune-mediated neurodevelopmental mouse model with relevance to schizophrenia. Transl Psychiatry. 2015;5:e637. doi: 10.1038/tp.2015.129.

Carelli RM, Wondolowski J. Anatomic distribution of reinforcer selective cell firing in the core and shell of the nucleus accumbens. Synapse. 2006;59(2):69-73. doi: 10.1002/syn.20217.

Bolton JL, Ruiz CM, Rismanchi N, Sanchez GA, Castillo E, Huang J, et al. Early-life adversity facilitates acquisition of cocaine self-administration and induces persistent anhedonia. Neurobiol Stress. 2018;8:57-67. doi: 10.1016/j.ynstr.2018.01.002.

Featherstone RE, Burton CL, Coppa-Hopman R, Rizos Z, Sinyard J, Kapur S, et al. Gestational treatment with methylazoxymethanol (MAM) that disrupts hippocampal-dependent memory does not alter behavioural response to cocaine. Pharmacol Biochem Behav. 2009;93(4):382-90. doi: 10.1016/j.pbb.2009.05.010.

Santos-Toscano R, Borcel E, Ucha M, Orihuel J, Capellan R, Roura-Martinez D, et al. Unaltered cocaine self-administration in the prenatal LPS rat model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2016;69:38-48. doi: 10.1016/j.pnpbp.2016.04.008.

Ruda-Kucerova J, Babinska Z, Amchova P, Stark T, Drago F, Sulcova A, et al. Reactivity to addictive drugs in the methylazoxymethanol (MAM) model of schizophrenia in male and female rats. World J Biol Psychiatry. 2017;18(2):129-42. doi: 10.1080/15622975.2016.1190032.

Ruda-Kucerova J, Babinska Z, Stark T, Micale V. Suppression of Methamphetamine Self-Administration by Ketamine Pre-treatment Is Absent in the Methylazoxymethanol (MAM) Rat Model of Schizophrenia. Neurotox Res. 2017;32(1):121-33. doi: 10.1007/s12640-017-9718-9.

Said N, Lakehayli S, El Khachibi M, El Ouahli M, Nadifi S, Hakkou F, et al. Prenatal stress induces vulnerability to nicotine addiction and alters D2 receptors' expression in the nucleus accumbens in adult rats. Neuroscience. 2015;304:279-85. doi: 10.1016/j.neuroscience.2015.07.029.

Brown RW, Schlitt MA, Owens AS, DePreter CC, Cummins ED, Kirby SL, et al. Effects of Environmental Enrichment on Nicotine Sensitization in Rats Neonatally Treated with Quinpirole: Analyses of Glial Cell Line-Derived Neurotrophic Factor and Implications towards Schizophrenia. Dev Neurosci. 2018;40(1):64-72. doi: 10.1159/000486391.

Waterhouse U, Brennan KA, Ellenbroek BA. Nicotine self-administration reverses cognitive deficits in a rat model for schizophrenia. Addict Biol. 2018;23(2):620-30. doi: 10.1111/adb.12517.

Weeks JJ, Rupprecht LE, Grace AA, Donny EC, Sved AF. Nicotine self-administration is not increased in the MAM rodent model of schizophrenia. Nicotine Tob Res. 2019. doi: 10.1093/ntr/ntz048.

Wang J, Carnicella S, Ahmadiantehrani S, He DY, Barak S, Kharazia V, et al. Nucleus accumbens-derived glial cell line-derived neurotrophic factor is a retrograde enhancer of dopaminergic tone in the mesocorticolimbic system. J Neurosci. 2010;30(43):14502-12. doi: 10.1523/JNEUROSCI.3909-10.2010.

Blednov YA, Benavidez JM, Geil C, Perra S, Morikawa H, Harris RA. Activation of inflammatory signaling by lipopolysaccharide produces a prolonged increase of voluntary alcohol intake in mice. Brain Behav Immun. 2011;25 Suppl 1:S92-S105. doi: 10.1016/j.bbi.2011.01.008.

Chappell AM, Carter E, McCool BA, Weiner JL. Adolescent rearing conditions influence the relationship between initial anxiety-like behavior and ethanol drinking in male Long Evans rats. Alcohol Clin Exp Res. 2013;37 Suppl 1:E394-403. doi: 10.1111/j.1530-0277.2012.01926.x.

Skelly MJ, Chappell AE, Carter E, Weiner JL. Adolescent social isolation increases anxiety-like behavior and ethanol intake and impairs fear extinction in adulthood: Possible role of disrupted noradrenergic signaling. Neuropharmacology. 2015;97:149-59. doi: 10.1016/j.neuropharm.2015.05.025.

Lopez MF, Doremus-Fitzwater TL, Becker HC. Chronic social isolation and chronic variable stress during early development induce later elevated ethanol intake in adult C57BL/6J mice. Alcohol. 2011;45(4):355-64. doi: 10.1016/j.alcohol.2010.08.017.

Holgate JY, Garcia H, Chatterjee S, Bartlett SE. Social and environmental enrichment has different effects on ethanol and sucrose consumption in mice. Brain Behav. 2017;7(8):e00767. doi: 10.1002/brb3.767.

Lee RS, Oswald LM, Wand GS. Early Life Stress as a Predictor of Co-Occurring Alcohol Use Disorder and Post-Traumatic Stress Disorder. Alcohol Res. 2018;39(2):147-59.

Enoch MA. The role of early life stress as a predictor for alcohol and drug dependence. Psychopharmacology (Berl). 2011;214(1):17-31. doi: 10.1007/s00213-010-1916-6.

Fletcher PJ, Li Z, Coen KM, Le AD. Acquisition of nicotine self-administration in amphetamine and phencyclidine models of schizophrenia: A role for stress? Schizophr Res. 2018;194:98-106. doi: 10.1016/j.schres.2017.02.028.

Baird JP, Turgeon S, Wallman A, Hulick V. Behavioral processes mediating phencyclidine-induced decreases in voluntary sucrose consumption. Pharmacol Biochem Behav. 2008;88(3):272-9. doi: 10.1016/j.pbb.2007.08.011.

Spielewoy C, Markou A. Withdrawal from chronic phencyclidine treatment induces long-lasting depression in brain reward function. Neuropsychopharmacology. 2003;28(6):1106-16. doi: 10.1038/sj.npp.1300124.

Chiappelli J, Chen S, Hackman A, Elliot Hong L. Evidence for differential opioid use disorder in schizophrenia in an addiction treatment population. Schizophr Res. 2018;194:26-31. doi: 10.1016/j.schres.2017.05.004.

Leal G, Bramham CR, Duarte CB. BDNF and Hippocampal Synaptic Plasticity. In: Litwack G, editor. Neurotrophins. vol. 104 of Vitamins and Hormones. Amsterdam: Academic Press; 2017. p. 153–195. doi: 10.1016/bs.vh.2016.10.004.

Bekinschtein P, Cammarota M, Medina JH. BDNF and memory processing. Neuropharmacology. 2014;76 Pt C:677-83. doi: 10.1016/j.neuropharm.2013.04.024.

Chen DC, Wang J, Wang B, Yang SC, Zhang CX, Zheng YL, et al. Decreased levels of serum brain-derived neurotrophic factor in drug-naive first-episode schizophrenia: relationship to clinical phenotypes. Psychopharmacology (Berl). 2009;207(3):375-80. doi: 10.1007/s00213-009-1665-6.

Man L, Lv X, Du XD, Yin G, Zhu X, Zhang Y, et al. Cognitive impairments and low BDNF serum levels in first-episode drug-naive patients with schizophrenia. Psychiatry Res. 2018;263:1-6. doi: 10.1016/j.psychres.2018.02.034.

Jena M, Ranjan R, Mishra BR, Mishra A, Nath S, Sahu P, et al. Effect of lurasidone vs olanzapine on neurotrophic biomarkers in unmedicated schizophrenia: A randomized controlled trial. J Psychiatr Res. 2019;112:1-6. doi: 10.1016/j.jpsychires.2019.02.007.

Hashimoto T, Bergen SE, Nguyen QL, Xu B, Monteggia LM, Pierri JN, et al. Relationship of brain-derived neurotrophic factor and its receptor TrkB to altered inhibitory prefrontal circuitry in schizophrenia. J Neurosci. 2005;25(2):372-83. doi: 10.1523/JNEUROSCI.4035-04.2005.

Saylor AJ, McGinty JF. Amphetamine-induced locomotion and gene expression are altered in BDNF heterozygous mice. Genes Brain Behav. 2008;7(8):906-14. doi: 10.1111/j.1601-183X.2008.00430.x.

Manning EE, van den Buuse M. BDNF deficiency and young-adult methamphetamine induce sex-specific effects on prepulse inhibition regulation. Front Cell Neurosci. 2013;7:92. doi: 10.3389/fncel.2013.00092.

Braff DL, Geyer MA, Swerdlow NR. Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl). 2001;156(2-3):234-58. doi: 10.1007/s002130100810.

Manning EE, Halberstadt AL, van den Buuse M. BDNF-Deficient Mice Show Reduced Psychosis-Related Behaviors Following Chronic Methamphetamine. Int J Neuropsychopharmacol. 2016;19(4). doi: 10.1093/ijnp/pyv116.

Manning EE, van den Buuse M. Altered social cognition in male BDNF heterozygous mice and following chronic methamphetamine exposure. Behav Brain Res. 2016;305:181-5. doi: 10.1016/j.bbr.2016.03.014.

Arime Y, Fukumura R, Miura I, Mekada K, Yoshiki A, Wakana S, et al. Effects of background mutations and single nucleotide polymorphisms (SNPs) on the Disc1 L100P behavioral phenotype associated with schizophrenia in mice. Behav Brain Funct. 2014;10:45. doi: 10.1186/1744-9081-10-45.

Baca M, Allan AM, Partridge LD, Wilson MC. Gene-environment interactions affect long-term depression (LTD) through changes in dopamine receptor affinity in Snap25 deficient mice. Brain Res. 2013;1532:85-98. doi: 10.1016/j.brainres.2013.08.012.

Tobacco, Genetics C. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet. 2010;42(5):441-7. doi: 10.1038/ng.571.

Koukouli F, Rooy M, Tziotis D, Sailor KA, O'Neill HC, Levenga J, et al. Nicotine reverses hypofrontality in animal models of addiction and schizophrenia. Nat Med. 2017;23(3):347-54. doi: 10.1038/nm.4274.

Korostishevsky M, Kaganovich M, Cholostoy A, Ashkenazi M, Ratner Y, Dahary D, et al. Is the G72/G30 locus associated with schizophrenia? single nucleotide polymorphisms, haplotypes, and gene expression analysis. Biol Psychiatry. 2004;56(3):169-76. doi: 10.1016/j.biopsych.2004.04.006.

Hambsch B, Keyworth H, Lind J, Otte DM, Racz I, Kitchen I, et al. Chronic nicotine improves short-term memory selectively in a G72 mouse model of schizophrenia. Br J Pharmacol. 2014;171(7):1758-71. doi: 10.1111/bph.12578.

Zanos P, Keyworth H, Georgiou P, Hambsch B, Otte DM, Kitchen I, et al. Chronic nicotine administration restores brain region specific upregulation of oxytocin receptor binding levels in a G72 mouse model of schizophrenia. Eur J Neurosci. 2018. doi: 10.1111/ejn.14155.

Grayson DR, Jia X, Chen Y, Sharma RP, Mitchell CP, Guidotti A, et al. Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci U S A. 2005;102(26):9341-6. doi: 10.1073/pnas.0503736102.

Tueting P, Costa E, Dwivedi Y, Guidotti A, Impagnatiello F, Manev R, et al. The phenotypic characteristics of heterozygous reeler mouse. Neuroreport. 1999;10(6):1329-34. doi: 10.1097/00001756-199904260-00032.

Qiu S, Korwek KM, Pratt-Davis AR, Peters M, Bergman MY, Weeber EJ. Cognitive disruption and altered hippocampus synaptic function in Reelin haploinsufficient mice. Neurobiol Learn Mem. 2006;85(3):228-42. doi: 10.1016/j.nlm.2005.11.001.

Macri S, Biamonte F, Romano E, Marino R, Keller F, Laviola G. Perseverative responding and neuroanatomical alterations in adult heterozygous reeler mice are mitigated by neonatal estrogen administration. Psychoneuroendocrinology. 2010;35(9):1374-87. doi: 10.1016/j.psyneuen.2010.03.012.

Maloku E, Covelo IR, Hanbauer I, Guidotti A, Kadriu B, Hu Q, et al. Lower number of cerebellar Purkinje neurons in psychosis is associated with reduced reelin expression. Proc Natl Acad Sci U S A. 2010;107(9):4407-11. doi: 10.1073/pnas.0914483107.

Biamonte F, Assenza G, Marino R, D'Amelio M, Panteri R, Caruso D, et al. Interactions between neuroactive steroids and reelin haploinsufficiency in Purkinje cell survival. Neurobiol Dis. 2009;36(1):103-15. doi: 10.1016/j.nbd.2009.07.001.

Romano E, Fuso A, Laviola G. Nicotine restores Wt-like levels of reelin and GAD67 gene expression in brain of heterozygous reeler mice. Neurotox Res. 2013;24(2):205-15. doi: 10.1007/s12640-013-9378-3.

Romano E, De Angelis F, Ulbrich L, De Jaco A, Fuso A, Laviola G. Nicotine exposure during adolescence: cognitive performance and brain gene expression in adult heterozygous reeler mice. Psychopharmacology (Berl). 2014;231(8):1775-87. doi: 10.1007/s00213-013-3388-y.

Mostaid MS, Lloyd D, Liberg B, Sundram S, Pereira A, Pantelis C, et al. Neuregulin-1 and schizophrenia in the genome-wide association study era. Neurosci Biobehav Rev. 2016;68:387-409. doi: 10.1016/j.neubiorev.2016.06.001.

Mei L, Xiong WC. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci. 2008;9(6):437-52. doi: 10.1038/nrn2392.

Jiang L, Emmetsberger J, Talmage DA, Role LW. Type III neuregulin 1 is required for multiple forms of excitatory synaptic plasticity of mouse cortico-amygdala circuits. J Neurosci. 2013;33(23):9655-66. doi: 10.1523/JNEUROSCI.2888-12.2013.

Chen YJ, Johnson MA, Lieberman MD, Goodchild RE, Schobel S, Lewandowski N, et al. Type III neuregulin-1 is required for normal sensorimotor gating, memory-related behaviors, and corticostriatal circuit components. J Neurosci. 2008;28(27):6872-83. doi: 10.1523/JNEUROSCI.1815-08.2008.

Suemaru K, Yasuda K, Umeda K, Araki H, Shibata K, Choshi T, et al. Nicotine blocks apomorphine-induced disruption of prepulse inhibition of the acoustic startle in rats: possible involvement of central nicotinic alpha7 receptors. Br J Pharmacol. 2004;142(5):843-50. doi: 10.1038/sj.bjp.0705855.

Hancock ML, Canetta SE, Role LW, Talmage DA. Presynaptic type III neuregulin1-ErbB signaling targets {alpha}7 nicotinic acetylcholine receptors to axons. J Cell Biol. 2008;181(3):511-21. doi: 10.1083/jcb.200710037.

Weickert CS, Tiwari Y, Schofield PR, Mowry BJ, Fullerton JM. Schizophrenia-associated HapICE haplotype is associated with increased NRG1 type III expression and high nucleotide diversity. Transl Psychiatry. 2012;2:e104. doi: 10.1038/tp.2012.25.

Olaya JC, Heusner CL, Matsumoto M, Shannon Weickert C, Karl T. Schizophrenia-relevant behaviours of female mice overexpressing neuregulin 1 type III. Behav Brain Res. 2018;353:227-35. doi: 10.1016/j.bbr.2018.03.026.

Olaya JC, Heusner CL, Matsumoto M, Sinclair D, Kondo MA, Karl T, et al. Overexpression of Neuregulin 1 Type III Confers Hippocampal mRNA Alterations and Schizophrenia-Like Behaviors in Mice. Schizophrenia bulletin. 2017. doi: 10.1093/schbul/sbx122.

Calzavara MB, Levin R, Medrano WA, Almeida V, Sampaio AP, Barone LC, et al. Effects of antipsychotics and amphetamine on social behaviors in spontaneously hypertensive rats. Behav Brain Res. 2011;225(1):15-22. doi: 10.1016/j.bbr.2011.06.026.

Laprairie RB, Bagher AM, Kelly ME, Denovan-Wright EM. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br J Pharmacol. 2015;172(20):4790-805. doi: 10.1111/bph.13250.

Zuardi AW, Crippa JA, Hallak JE, Bhattacharyya S, Atakan Z, Martin-Santos R, et al. A critical review of the antipsychotic effects of cannabidiol: 30 years of a translational investigation. Curr Pharm Des. 2012;18(32):5131-40. doi: 10.2174/138161212802884681.

Almeida V, Levin R, Peres FF, Niigaki ST, Calzavara MB, Zuardi AW, et al. Cannabidiol exhibits anxiolytic but not antipsychotic property evaluated in the social interaction test. Prog Neuropsychopharmacol Biol Psychiatry. 2013;41:30-5. doi: 10.1016/j.pnpbp.2012.10.024.

Peres FF, Diana MC, Levin R, Suiama MA, Almeida V, Vendramini AM, et al. Cannabidiol Administered During Peri-Adolescence Prevents Behavioral Abnormalities in an Animal Model of Schizophrenia. Front Pharmacol. 2018;9:901. doi: 10.3389/fphar.2018.00901.

Mandolini GM, Lazzaretti M, Pigoni A, Oldani L, Delvecchio G, Brambilla P. Pharmacological properties of cannabidiol in the treatment of psychiatric disorders: a critical overview. Epidemiol Psychiatr Sci. 2018;27(4):327-35. doi: 10.1017/S2045796018000239.

Karl T, Burne THJ, Van den Buuse M, Chesworth R. Do transmembrane domain neuregulin 1 mutant mice exhibit a reliable sensorimotor gating deficit? Behavioural Brain Research. 2011;223:336-41. doi: 10.1016/j.bbr.2011.04.051.

Karl T, Duffy L, Scimone A, Harvey RP, Schofield PR. Altered motor activity, exploration and anxiety in heterozygous neuregulin 1 mutant mice: implications for understanding schizophrenia. Genes Brain Behav. 2007;6(7):677-87. doi: 10.1111/j.1601-183X.2006.00298.x.

Long LE, Chesworth R, Huang XF, Wong A, Spiro A, McGregor IS, et al. Distinct neurobehavioural effects of cannabidiol in transmembrane domain neuregulin 1 mutant mice. PloS one. 2012;7(4):e34129. doi: 10.1371/journal.pone.0034129.

Segal-Gavish H, Gazit N, Barhum Y, Ben-Zur T, Taler M, Hornfeld SH, et al. BDNF overexpression prevents cognitive deficit elicited by adolescent cannabis exposure and host susceptibility interaction. Hum Mol Genet. 2017;26(13):2462-71. doi: 10.1093/hmg/ddx139.

Boucher AA, Arnold JC, Duffy L, Schofield PR, Micheau J, Karl T. Heterozygous neuregulin 1 mice are more sensitive to the behavioural effects of Delta9-tetrahydrocannabinol. Psychopharmacology (Berl). 2007;192(3):325-36. doi: 10.1007/s00213-007-0721-3.

Long LE, Chesworth R, Arnold JC, Karl T. A follow-up study: acute behavioural effects of Delta(9)-THC in female heterozygous neuregulin 1 transmembrane domain mutant mice. Psychopharmacology (Berl). 2010;211(3):277-89. doi: 10.1007/s00213-010-1896-6.

Lloyd D, Talmage D, Shannon Weickert C, Karl T. Reduced type III neuregulin 1 expression does not modulate the behavioural sensitivity of mice to acute Delta(9)-tetrahydrocannabinol (D(9)-THC). Pharmacol Biochem Behav. 2018;170:64-70. doi: 10.1016/j.pbb.2018.05.003.

Long LE, Chesworth R, Huang XF, McGregor IS, Arnold JC, Karl T. Transmembrane domain Nrg1 mutant mice show altered susceptibility to the neurobehavioural actions of repeated THC exposure in adolescence. Int J Neuropsychopharmacol. 2013;16(1):163-75. doi: 10.1017/S1461145711001854.

Spencer JR, Darbyshire KM, Boucher AA, Kashem MA, Long LE, McGregor IS, et al. Novel molecular changes induced by Nrg1 hypomorphism and Nrg1-cannabinoid interaction in adolescence: a hippocampal proteomic study in mice. Front Cell Neurosci. 2013;7:15. doi: 10.3389/fncel.2013.00015.

Burnet PW, Eastwood SL, Harrison PJ. 5-HT1A and 5-HT2A receptor mRNAs and binding site densities are differentially altered in schizophrenia. Neuropsychopharmacology. 1996;15(5):442-55. doi: 10.1016/S0893-133X(96)00053-X.

Kang K, Huang XF, Wang Q, Deng C. Decreased density of serotonin 2A receptors in the superior temporal gyrus in schizophrenia--a postmortem study. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(5):867-71. doi: 10.1016/j.pnpbp.2009.04.010.

Compton MT, Kelley ME, Ramsay CE, Pringle M, Goulding SM, Esterberg ML, et al. Association of pre-onset cannabis, alcohol, and tobacco use with age at onset of prodrome and age at onset of psychosis in first-episode patients. Am J Psychiatry. 2009;166(11):1251-7. doi: 10.1176/appi.ajp.2009.09030311.

Decoster J, van Os J, Kenis G, Henquet C, Peuskens J, De Hert M, et al. Age at onset of psychotic disorder: cannabis, BDNF Val66Met, and sex-specific models of gene-environment interaction. Am J Med Genet B Neuropsychiatr Genet. 2011;156B(3):363-9. doi: 10.1002/ajmg.b.31174.

Donoghue K, Doody GA, Murray RM, Jones PB, Morgan C, Dazzan P, et al. Cannabis use, gender and age of onset of schizophrenia: data from the AESOP study. Psychiatry Res. 2014;215(3):528-32. doi: 10.1016/j.psychres.2013.12.038.

Koskinen J, Lohonen J, Koponen H, Isohanni M, Miettunen J. Rate of cannabis use disorders in clinical samples of patients with schizophrenia: a meta-analysis. Schizophrenia bulletin. 2010;36(6):1115-30. doi: 10.1093/schbul/sbp031.

Berg SA, Sentir AM, Bell RL, Engleman EA, Chambers RA. Nicotine effects in adolescence and adulthood on cognition and alpha(4)beta(2)-nicotinic receptors in the neonatal ventral hippocampal lesion rat model of schizophrenia. Psychopharmacology (Berl). 2015;232(10):1681-92. doi: 10.1007/s00213-014-3800-2.

Straley ME, Van Oeffelen W, Theze S, Sullivan AM, O'Mahony SM, Cryan JF, et al. Distinct alterations in motor & reward seeking behavior are dependent on the gestational age of exposure to LPS-induced maternal immune activation. Brain Behav Immun. 2017;63:21-34. doi: 10.1016/j.bbi.2016.06.002.

Alkhattabi N, Todd I, Negm O, Tighe PJ, Fairclough LC. Tobacco smoke and nicotine suppress expression of activating signaling molecules in human dendritic cells. Toxicol Lett. 2018;299:40-6. doi: 10.1016/j.toxlet.2018.09.002.

Cui WY, Zhao S, Polanowska-Grabowska R, Wang J, Wei J, Dash B, et al. Identification and characterization of poly(I:C)-induced molecular responses attenuated by nicotine in mouse macrophages. Mol Pharmacol. 2013;83(1):61-72. doi: 10.1124/mol.112.081497.

Osborne AL, Solowij N, Babic I, Huang XF, Weston-Green K. Improved Social Interaction, Recognition and Working Memory with Cannabidiol Treatment in a Prenatal Infection (poly I:C) Rat Model. Neuropsychopharmacology. 2017;42(7):1447-57. doi: 10.1038/npp.2017.40.

Osborne AL, Solowij N, Babic I, Lum JS, Newell KA, Huang XF, et al. Effect of cannabidiol on endocannabinoid, glutamatergic and GABAergic signalling markers in male offspring of a maternal immune activation (poly I:C) model relevant to schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2019;95:109666. doi: 10.1016/j.pnpbp.2019.109666.

Osborne AL, Solowij N, Babic I, Lum JS, Huang XF, Newell KA, et al. Cannabidiol improves behavioural and neurochemical deficits in adult female offspring of the maternal immune activation (poly I:C) model of neurodevelopmental disorders. Brain Behav Immun. 2019;81:574-87. doi: 10.1016/j.bbi.2019.07.018.

Gomes FV, Guimaraes FS, Grace AA. Effects of pubertal cannabinoid administration on attentional set-shifting and dopaminergic hyper-responsivity in a developmental disruption model of schizophrenia. Int J Neuropsychopharmacol. 2014;18(2). doi: 10.1093/ijnp/pyu018.

D'Souza DC, Sewell RA, Ranganathan M. Cannabis and psychosis/schizophrenia: human studies. Eur Arch Psychiatry Clin Neurosci. 2009;259(7):413-31. doi: 10.1007/s00406-009-0024-2.

Aguilar DD, Giuffrida A, Lodge DJ. Adolescent Synthetic Cannabinoid Exposure Produces Enduring Changes in Dopamine Neuron Activity in a Rodent Model of Schizophrenia Susceptibility. Int J Neuropsychopharmacol. 2018;21(4):393-403. doi: 10.1093/ijnp/pyy003.

Caspi A, Moffitt TE, Cannon M, McClay J, Murray R, Harrington H, et al. Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene X environment interaction. Biol Psychiatry. 2005;57(10):1117-27. doi: 10.1016/j.biopsych.2005.01.026.

Henquet C, Krabbendam L, Spauwen J, Kaplan C, Lieb R, Wittchen HU, et al. Prospective cohort study of cannabis use, predisposition for psychosis, and psychotic symptoms in young people. Bmj. 2005;330(7481):11. doi: 10.1136/bmj.38267.664086.63.

French L, Gray C, Leonard G, Perron M, Pike GB, Richer L, et al. Early Cannabis Use, Polygenic Risk Score for Schizophrenia and Brain Maturation in Adolescence. JAMA Psychiatry. 2015;72(10):1002-11. doi: 10.1001/jamapsychiatry.2015.1131.

Bédard AM, Maheux J, Lévesque D, Samaha AN. Continuous, but not intermittent, antipsychotic drug delivery intensifies the pursuit of reward cues. Neuropsychopharmacology. 2011;36(6):1248-59. doi: 10.1038/npp.2011.10.

Bedard AM, Maheux J, Levesque D, Samaha AN. Prior haloperidol, but not olanzapine, exposure augments the pursuit of reward cues: implications for substance abuse in schizophrenia. Schizophrenia bulletin. 2013;39(3):692-702. doi: 10.1093/schbul/sbs077.

El Hage C, Bédard AM, Samaha AN. Antipsychotic treatment leading to dopamine supersensitivity persistently alters nucleus accumbens function. Neuropharmacology. 2015;99:715-25. doi: 10.1016/j.neuropharm.2015.03.012.

Light GA, Hsu JL, Hsieh MH, Meyer-Gomes K, Sprock J, Swerdlow NR, et al. Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients. Biol Psychiatry. 2006;60(11):1231-40. doi: 10.1016/j.biopsych.2006.03.055.

Sivarao DV, Frenkel M, Chen P, Healy FL, Lodge NJ, Zaczek R. MK-801 disrupts and nicotine augments 40 Hz auditory steady state responses in the auditory cortex of the urethane-anesthetized rat. Neuropharmacology. 2013;73:1-9. doi: 10.1016/j.neuropharm.2013.05.006.

Cadinu D, Grayson B, Podda G, Harte MK, Doostdar N, Neill JC. NMDA receptor antagonist rodent models for cognition in schizophrenia and identification of novel drug treatments, an update. Neuropharmacology. 2018;142:41-62. doi: 10.1016/j.neuropharm.2017.11.045.

Brown JW, Rueter LE, Zhang M. Predictive validity of a MK-801-induced cognitive impairment model in mice: implications on the potential limitations and challenges of modeling cognitive impairment associated with schizophrenia preclinically. Prog Neuropsychopharmacol Biol Psychiatry. 2014;49:53-62. doi: 10.1016/j.pnpbp.2013.11.008.

Scott D, Taylor JR. Chronic nicotine attenuates phencyclidine-induced impulsivity in a mouse serial reaction time task. Behav Brain Res. 2014;259:164-73. doi: 10.1016/j.bbr.2013.11.009.

Cloke JM, Nguyen R, Chung BY, Wasserman DI, De Lisio S, Kim JC, et al. A Novel Multisensory Integration Task Reveals Robust Deficits in Rodent Models of Schizophrenia: Converging Evidence for Remediation via Nicotinic Receptor Stimulation of Inhibitory Transmission in the Prefrontal Cortex. J Neurosci. 2016;36(50):12570-85. doi: 10.1523/JNEUROSCI.1628-16.2016.

Rodriguez G, Neugebauer NM, Yao KL, Meltzer HY, Csernansky JG, Dong H. Delta9-tetrahydrocannabinol (Delta9-THC) administration after neonatal exposure to phencyclidine potentiates schizophrenia-related behavioral phenotypes in mice. Pharmacol Biochem Behav. 2017;159:6-11. doi: 10.1016/j.pbb.2017.06.010.

Aguilar DD, Giuffrida A, Lodge DJ. THC and endocannabinoids differentially regulate neuronal activity in the prefrontal cortex and hippocampus in the subchronic PCP model of schizophrenia. J Psychopharmacol. 2016;30(2):169-81. doi: 10.1177/0269881115612239.

Skosnik PD, Cortes-Briones JA, Hajos M. It's All in the Rhythm: The Role of Cannabinoids in Neural Oscillations and Psychosis. Biol Psychiatry. 2016;79(7):568-77. doi: 10.1016/j.biopsych.2015.12.011.

Spano MS, Fattore L, Cadeddu F, Fratta W, Fadda P. Chronic cannabinoid exposure reduces phencyclidine-induced schizophrenia-like positive symptoms in adult rats. Psychopharmacology (Berl). 2013;225(3):531-42. doi: 10.1007/s00213-012-2839-1.

Seillier A, Martinez AA, Giuffrida A. Phencyclidine-induced social withdrawal results from deficient stimulation of cannabinoid CB(1) receptors: implications for schizophrenia. Neuropsychopharmacology. 2013;38(9):1816-24. doi: 10.1038/npp.2013.81.

Matricon J, Seillier A, Giuffrida A. Distinct neuronal activation patterns are associated with PCP-induced social withdrawal and its reversal by the endocannabinoid-enhancing drug URB597. Neuroscience research. 2016;110:49-58. doi: 10.1016/j.neures.2016.04.004.

Szucs E, Dvoracsko S, Tomboly C, Buki A, Kekesi G, Horvath G, et al. Decreased CB receptor binding and cannabinoid signaling in three brain regions of a rat model of schizophrenia. Neurosci Lett. 2016;633:87-93. doi: 10.1016/j.neulet.2016.09.020.

Eggan SM, Hashimoto T, Lewis DA. Reduced cortical cannabinoid 1 receptor messenger RNA and protein expression in schizophrenia. Arch Gen Psychiatry. 2008;65(7):772-84. doi: 10.1001/archpsyc.65.7.772.

Eggan SM, Stoyak SR, Verrico CD, Lewis DA. Cannabinoid CB1 receptor immunoreactivity in the prefrontal cortex: Comparison of schizophrenia and major depressive disorder. Neuropsychopharmacology. 2010;35(10):2060-71. doi: 10.1038/npp.2010.75.

Fernandez-Espejo E, Viveros MP, Nunez L, Ellenbroek BA, Rodriguez de Fonseca F. Role of cannabis and endocannabinoids in the genesis of schizophrenia. Psychopharmacology (Berl). 2009;206(4):531-49. doi: 10.1007/s00213-009-1612-6.

Muller-Vahl KR, Emrich HM. Cannabis and schizophrenia: towards a cannabinoid hypothesis of schizophrenia. Expert Rev Neurother. 2008;8(7):1037-48. doi: 10.1586/14737175.8.7.1037.

Moran LV, Stoeckel LE, Wang K, Caine CE, Villafuerte R, Calderon V, et al. Nicotine-induced activation of caudate and anterior cingulate cortex in response to errors in schizophrenia. Psychopharmacology (Berl). 2018;235(3):789-802. doi: 10.1007/s00213-017-4794-3.

Smucny J, Tregellas JR. Targeting neuronal dysfunction in schizophrenia with nicotine: Evidence from neurophysiology to neuroimaging. J Psychopharmacol. 2017;31(7):801-11. doi: 10.1177/0269881117705071.

Manrique-Garcia E, Zammit S, Dalman C, Hemmingsson T, Andreasson S, Allebeck P. Prognosis of schizophrenia in persons with and without a history of cannabis use. Psychol Med. 2014;44(12):2513-21. doi: 10.1017/S0033291714000191.

Leweke FM, Piomelli D, Pahlisch F, Muhl D, Gerth CW, Hoyer C, et al. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry. 2012;2:e94. doi: 10.1038/tp.2012.15.

Swerdlow NR, Bhakta SG, Talledo JA, Franz DM, Hughes EL, Rana BK, et al. Effects of Amphetamine on Sensorimotor Gating and Neurocognition in Antipsychotic-Medicated Schizophrenia Patients. Neuropsychopharmacology. 2018;43(4):708-17. doi: 10.1038/npp.2017.285.

Ibarra-Lecue I, Pilar-Cuellar F, Muguruza C, Florensa-Zanuy E, Diaz A, Uriguen L, et al. The endocannabinoid system in mental disorders: Evidence from human brain studies. Biochem Pharmacol. 2018;157:97-107. doi: 10.1016/j.bcp.2018.07.009.

Poels EM, Kegeles LS, Kantrowitz JT, Slifstein M, Javitt DC, Lieberman JA, et al. Imaging glutamate in schizophrenia: review of findings and implications for drug discovery. Mol Psychiatry. 2014;19(1):20-9. doi: 10.1038/mp.2013.136.

de Jonge JC, Vinkers CH, Hulshoff Pol HE, Marsman A. GABAergic Mechanisms in Schizophrenia: Linking Postmortem and In Vivo Studies. Front Psychiatry. 2017;8:118. doi: 10.3389/fpsyt.2017.00118.

Selvaraj S, Arnone D, Cappai A, Howes O. Alterations in the serotonin system in schizophrenia: a systematic review and meta-analysis of postmortem and molecular imaging studies. Neurosci Biobehav Rev. 2014;45:233-45. doi: 10.1016/j.neubiorev.2014.06.005.

Sara GE, Burgess PM, Malhi GS, Whiteford HA, Hall WC. Stimulant and other substance use disorders in schizophrenia: prevalence, correlates and impacts in a population sample. Aust N Z J Psychiatry. 2014;48(11):1036-47. doi: 10.1177/0004867414533838.

Barnett JH, Werners U, Secher SM, Hill KE, Brazil R, Masson K, et al. Substance use in a population-based clinic sample of people with first-episode psychosis. Br J Psychiatry. 2007;190:515-20. doi: 10.1192/bjp.bp.106.024448.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.